Skip to content

Commit

Permalink
finished problem 1, started problem 2
Browse files Browse the repository at this point in the history
  • Loading branch information
lassebe committed Jun 22, 2016
1 parent d4eabaf commit 1bc3f8d
Showing 1 changed file with 60 additions and 7 deletions.
67 changes: 60 additions & 7 deletions opres/a3/assignment.tex
Original file line number Diff line number Diff line change
Expand Up @@ -17,34 +17,87 @@ \section*{Problem 1.}
Before applying the Simplex algorithm to the given LP we need to write it in Standard Form, which means we need to add slack variables to change the inequalities to strict equality signs:

\begin{tabular}{ l l l l l }
0 & + 100$x_1$ & + 10$x_2$ & + $x_3$ \\ \hline
0 & $+ 100x_1$ & $+ 10x_2$ & + $x_3$ \\ \hline

$x_4$ = & 1 & $-x_1$ \\
$x_5$ = & 100 & $-20x_1$ & $- x_2$ \\
$x_6$ = & 10000 & $-200x_1$ & $-20x_2$ & $-x_3$ \\

\\

100 & + 10$x_2$ & + $x_3$ & $-100x_4$\\ \hline
% x1 -> 1
100 & $+ 10x_2$ & + $x_3$ & $-100x_4$\\ \hline

$x_1$ = & 1 & $-x_4$ \\
$x_5$ = & 80 & $- x_2$ & $-20x_4$ \\
$x_6$ = & 9800 & $-20x_2$ & $-x_3$ & $-200x_4$ \\


\\
% x2 -> 20
900 & $+ 100x_4$ & + $x_3$ & $-10x_5$\\ \hline

$x_1$ = & 1 & $-x_4$ \\
$x_2$ = & 80 & $- x_5$ & $+20x_4$ \\
$x_6$ = & 8200 & $-x_3$ & $-200x_4$ & $+20x_5$ \\

\\
% x4 -> 1
1000 & $+x_3$ & $-100x_1$ & $-10x_5$ \\ \hline

$x_4$ = & 1 & $-x_1$ \\
$x_2$ = & 100 & $- x_5$ & $-20x_1$ \\
$x_6$ = & 8000 & $-x_3$ & $+200x_1$ & $+20x_5$ \\

\\
% x3 -> 8000
9000 & $+100x_1$ & $+10x_5$ & $-x_6$ \\ \hline

$x_4$ = & 1 & $-x_1$ \\
$x_2$ = & 100 & $- x_5$ & $-20x_1$ \\
$x_3$ = & 8000 & $+200x_1$ & $+20x_5$ & $-x_6$ \\

\\
% x1 -> 100
9100 & $+10x_5$ & $-x_6$ & $-100x_4$ \\ \hline

$x_1$ = & 1 & $-x_4$ \\
$x_2$ = & 80 & $- x_5$ & $+20x_4$ \\
$x_3$ = & 8200 & $-200x_4$ & $+20x_5$ & $-x_6$ \\

\\
% x5 -> 80
9900 & $+100x_4$ & $-10x_2$ & $-x_6$ \\ \hline

$x_1$ = & 1 & $-x_4$ \\
$x_5$ = & 80 & $- x_2$ & $+20x_4$ \\
$x_3$ = & 9800 & $+200x_4$ & $-20x_2$ & $-x_6$ \\

\\
% x1 -> 1
10000 & $-100x_1$ & $-10x_2$ & $-x_6$ \\ \hline

$x_4$ = & 1 & $-x_1$ \\
$x_5$ = & 100 & $- x_2$ & $-20x_1$ \\
$x_3$ = & 10000 & $-200x_1$ & $-20x_2$ & $-x_6$ \\

\end{tabular}

% Put calculations here

Optimal solution =
Optimal value =
It took $ $ iterations
Optimal solution is $\{ x_1 = 0, x_2 = 0, x_3 = 10000 \}$\\
Optimal value = $10000$ \\
It took $7$ iterations


\section*{Problem 2.}

\includegraphics{figure.pdf}

When applying the Simplex method we move from the origin $(0,0,0)$, to $(1,0,0)$.
Then to $(1,80,0)$, then to $(0,100,0)$, then up to $(0,100,8200)$, over to $(0,80,8000)$.
Then to $(1,80,8200)$, followed by $(1,0,9800)$, and finally $(0,0,10000)$. \\

In other words, we move from the far lower left corner, counter-clockwise around the base, then up

\section*{Problem 3.}

\section*{Problem 4.}
Expand Down

0 comments on commit 1bc3f8d

Please sign in to comment.