Skip to content

Optimal binning: monotonic binning with constraints. Support batch & stream optimal binning. Scorecard modelling and counterfactual explanations.

License

Notifications You must be signed in to change notification settings

lassilehtonen/optbinning

 
 

Repository files navigation

OptBinning

https://img.shields.io/github/license/guillermo-navas-palencia/optbinning https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10-blue https://img.shields.io/pypi/v/optbinning?color=blueviolet https://static.pepy.tech/badge/optbinning https://static.pepy.tech/badge/optbinning/month

OptBinning is a library written in Python implementing a rigorous and flexible mathematical programming formulation to solve the optimal binning problem for a binary, continuous and multiclass target type, incorporating constraints not previously addressed.

doc/source/_images/binning_binary.png
doc/source/_images/binning_data_stream.gif
doc/source/_images/binning_2d_readme.png
doc/source/_images/binning_2d_readme_woe.png

To install the current release of OptBinning from PyPI:

pip install optbinning

To include batch and stream binning algorithms (this option is not required for most users):

pip install optbinning[distributed]

To install from source, download or clone the git repository

git clone https://github.com/guillermo-navas-palencia/optbinning.git
cd optbinning
python setup.py install

OptBinning requires

  • matplotlib
  • numpy (>=1.16.1)
  • ortools (>=9.4)
  • pandas
  • ropwr (>=1.0.0)
  • scikit-learn (>=1.0.2)
  • scipy (>=1.6.0)

OptBinning[distributed] requires additional packages

  • pympler
  • tdigest

Please visit the OptBinning documentation (current release) http://gnpalencia.org/optbinning/. If your are new to OptBinning, you can get started following the tutorials and checking the API references.

Let's load a well-known dataset from the UCI repository and choose a variable to discretize and the binary target.

import pandas as pd
from sklearn.datasets import load_breast_cancer

data = load_breast_cancer()
df = pd.DataFrame(data.data, columns=data.feature_names)

variable = "mean radius"
x = df[variable].values
y = data.target

Import and instantiate an OptimalBinning object class. We pass the variable name, its data type, and a solver, in this case, we choose the constraint programming solver. Fit the optimal binning object with arrays x and y.

from optbinning import OptimalBinning
optb = OptimalBinning(name=variable, dtype="numerical", solver="cp")
optb.fit(x, y)

Check status and retrieve optimal split points

>>> optb.status
'OPTIMAL'

>>> optb.splits
array([11.42500019, 12.32999992, 13.09499979, 13.70499992, 15.04500008,
       16.92500019])

The optimal binning algorithms return a binning table; a binning table displays the binned data and several metrics for each bin. Call the method build, which returns a pandas.DataFrame.

>>> optb.binning_table.build()
                   Bin  Count  Count (%)  Non-event  Event  Event rate       WoE        IV        JS
0        [-inf, 11.43)    118   0.207381          3    115    0.974576  -3.12517  0.962483  0.087205
1       [11.43, 12.33)     79   0.138840          3     76    0.962025  -2.71097  0.538763  0.052198
2       [12.33, 13.09)     68   0.119508          7     61    0.897059  -1.64381  0.226599  0.025513
3       [13.09, 13.70)     49   0.086116         10     39    0.795918 -0.839827  0.052131  0.006331
4       [13.70, 15.05)     83   0.145870         28     55    0.662651 -0.153979  0.003385  0.000423
5       [15.05, 16.93)     54   0.094903         44     10    0.185185   2.00275  0.359566  0.038678
6         [16.93, inf)    118   0.207381        117      1    0.008475   5.28332  2.900997  0.183436
7              Special      0   0.000000          0      0    0.000000         0  0.000000  0.000000
8              Missing      0   0.000000          0      0    0.000000         0  0.000000  0.000000
Totals                    569   1.000000        212    357    0.627417            5.043925  0.393784

You can use the method plot to visualize the histogram and WoE or event rate curve. Note that the Bin ID corresponds to the binning table index.

>>> optb.binning_table.plot(metric="woe")
doc/source/_images/binning_readme_example_woe.png

Optionally, you can show the binning plot with the actual bin widths.

>>> optb.binning_table.plot(metric="woe", style="actual", add_special=False, add_missing=False)
doc/source/_images/binning_readme_example_split_woe.png

Now that we have checked the binned data, we can transform our original data into WoE or event rate values.

x_transform_woe = optb.transform(x, metric="woe")
x_transform_event_rate = optb.transform(x, metric="event_rate")

The analysis method performs a statistical analysis of the binning table, computing the statistics Gini index, Information Value (IV), Jensen-Shannon divergence, and the quality score. Additionally, several statistical significance tests between consecutive bins of the contingency table are performed.

>>> optb.binning_table.analysis()
---------------------------------------------
OptimalBinning: Binary Binning Table Analysis
---------------------------------------------

  General metrics

    Gini index               0.87541620
    IV (Jeffrey)             5.04392547
    JS (Jensen-Shannon)      0.39378376
    Hellinger                0.47248971
    Triangular               1.25592041
    KS                       0.72862164
    HHI                      0.15727342
    HHI (normalized)         0.05193260
    Cramer's V               0.80066760
    Quality score            0.00000000

  Monotonic trend            descending

  Significance tests

    Bin A  Bin B  t-statistic       p-value  P[A > B]      P[B > A]
        0      1     0.252432  6.153679e-01  0.684380  3.156202e-01
        1      2     2.432829  1.188183e-01  0.948125  5.187465e-02
        2      3     2.345804  1.256207e-01  0.937874  6.212635e-02
        3      4     2.669235  1.023052e-01  0.955269  4.473083e-02
        4      5    29.910964  4.523477e-08  1.000000  9.814594e-12
        5      6    19.324617  1.102754e-05  0.999999  1.216668e-06

Print overview information about the options settings, problem statistics, and the solution of the computation.

>>> optb.information(print_level=2)
optbinning (Version 0.17.3)
Copyright (c) 2019-2023 Guillermo Navas-Palencia, Apache License 2.0

  Begin options
    name                         mean radius   * U
    dtype                          numerical   * d
    prebinning_method                   cart   * d
    solver                                cp   * d
    divergence                            iv   * d
    max_n_prebins                         20   * d
    min_prebin_size                     0.05   * d
    min_n_bins                            no   * d
    max_n_bins                            no   * d
    min_bin_size                          no   * d
    max_bin_size                          no   * d
    min_bin_n_nonevent                    no   * d
    max_bin_n_nonevent                    no   * d
    min_bin_n_event                       no   * d
    max_bin_n_event                       no   * d
    monotonic_trend                     auto   * d
    min_event_rate_diff                    0   * d
    max_pvalue                            no   * d
    max_pvalue_policy            consecutive   * d
    gamma                                  0   * d
    class_weight                          no   * d
    cat_cutoff                            no   * d
    user_splits                           no   * d
    user_splits_fixed                     no   * d
    special_codes                         no   * d
    split_digits                          no   * d
    mip_solver                           bop   * d
    time_limit                           100   * d
    verbose                            False   * d
  End options

  Name    : mean radius
  Status  : OPTIMAL

  Pre-binning statistics
    Number of pre-bins                     9
    Number of refinements                  1

  Solver statistics
    Type                                  cp
    Number of booleans                    26
    Number of branches                    58
    Number of conflicts                    0
    Objective value                  5043922
    Best objective bound             5043922

  Timing
    Total time                          0.04 sec
    Pre-processing                      0.00 sec   (  0.33%)
    Pre-binning                         0.00 sec   (  5.54%)
    Solver                              0.04 sec   ( 93.03%)
      model generation                  0.03 sec   ( 85.61%)
      optimizer                         0.01 sec   ( 14.39%)
    Post-processing                     0.00 sec   (  0.30%)

In this case, we choose two variables to discretized and the binary target.

import pandas as pd
from sklearn.datasets import load_breast_cancer

data = load_breast_cancer()
df = pd.DataFrame(data.data, columns=data.feature_names)

variable1 = "mean radius"
variable2 = "worst concavity"
x = df[variable1].values
y = df[variable2].values
z = data.target

Import and instantiate an OptimalBinning2D object class. We pass the variable names, and monotonic trends. Fit the optimal binning object with arrays x, y and z.

from optbinning import OptimalBinning2D
optb = OptimalBinning2D(name_x=variable1, name_y=variable2, monotonic_trend_x="descending",
                        monotonic_trend_y="descending", min_bin_size=0.05)
optb.fit(x, y, z)

Show binning table:

>>> optb.binning_table.build()
                Bin x         Bin y  Count  Count (%)  Non-event  Event  Event rate       WoE        IV        JS
0        (-inf, 13.70)  (-inf, 0.21)    219   0.384886          1    218    0.995434 -4.863346  2.946834  0.199430
1         [13.70, inf)  (-inf, 0.21)     48   0.084359          5     43    0.895833 -1.630613  0.157946  0.017811
2        (-inf, 13.09)  [0.21, 0.38)     48   0.084359          1     47    0.979167 -3.328998  0.422569  0.037010
3       [13.09, 15.05)  [0.21, 0.38)     46   0.080844         17     29    0.630435 -0.012933  0.000013  0.000002
4         [15.05, inf)  [0.21, 0.32)     32   0.056239         29      3    0.093750  2.789833  0.358184  0.034271
5         [15.05, inf)   [0.32, inf)    129   0.226714        128      1    0.007752  5.373180  3.229133  0.201294
6        (-inf, 15.05)   [0.38, inf)     47   0.082601         31     16    0.340426  1.182548  0.119920  0.014173
7              Special       Special      0   0.000000          0      0    0.000000  0.000000  0.000000  0.000000
8              Missing       Missing      0   0.000000          0      0    0.000000  0.000000  0.000000  0.000000
Totals                                  569   1.000000        212    357    0.627417            7.234600  0.503991

Similar to the optimal binning, you can generate a histogram 2D to visualize WoE and event rate.

>>> optb.binning_table.plot(metric="event_rate")
doc/source/_images/binning_2d_readme_example.png

Let's load the California housing dataset.

import pandas as pd

from sklearn.datasets import fetch_california_housing
from sklearn.linear_model import HuberRegressor

from optbinning import BinningProcess
from optbinning import Scorecard

data = fetch_california_housing()

target = "target"
variable_names = data.feature_names
X = pd.DataFrame(data.data, columns=variable_names)
y = data.target

Instantiate a binning process, an estimator, and a scorecard with scaling method and reverse mode.

binning_process = BinningProcess(variable_names)

estimator = HuberRegressor(max_iter=200)

scorecard = Scorecard(binning_process=binning_process, estimator=estimator,
                      scaling_method="min_max",
                      scaling_method_params={"min": 0, "max": 100},
                      reverse_scorecard=True)

scorecard.fit(X, y)

Print overview information about the options settings, problems statistics, and the number of selected variables after the binning process.

>>> scorecard.information(print_level=2)
optbinning (Version 0.17.3)
Copyright (c) 2019-2023 Guillermo Navas-Palencia, Apache License 2.0

  Begin options
    binning_process                      yes   * U
    estimator                            yes   * U
    scaling_method                   min_max   * U
    scaling_method_params                yes   * U
    intercept_based                    False   * d
    reverse_scorecard                   True   * U
    rounding                           False   * d
    verbose                            False   * d
  End options

  Statistics
    Number of records                  20640
    Number of variables                    8
    Target type                   continuous

    Number of numerical                    8
    Number of categorical                  0
    Number of selected                     8

  Timing
    Total time                          2.31 sec
    Binning process                     1.83 sec   ( 79.00%)
    Estimator                           0.41 sec   ( 17.52%)
    Build scorecard                     0.08 sec   (  3.40%)
      rounding                          0.00 sec   (  0.00%)
>>> scorecard.table(style="summary")

Two scorecard styles are available: style="summary" shows the variable name, and their corresponding bins and assigned points; style="detailed" adds information from the corresponding binning table.

     Variable                 Bin     Points
0      MedInc        [-inf, 1.90)   9.869224
1      MedInc        [1.90, 2.16)  10.896940
2      MedInc        [2.16, 2.37)  11.482997
3      MedInc        [2.37, 2.66)  12.607805
4      MedInc        [2.66, 2.88)  13.609078
..        ...                 ...        ...
2   Longitude  [-118.33, -118.26)  10.470401
3   Longitude  [-118.26, -118.16)   9.092391
4   Longitude      [-118.16, inf)  10.223936
5   Longitude             Special   1.376862
6   Longitude             Missing   1.376862

[94 rows x 3 columns]
>>> scorecard.table(style="detailed")
     Variable  Bin id                 Bin  Count  Count (%)  ...  Zeros count       WoE        IV  Coefficient     Points
0      MedInc       0        [-inf, 1.90)   2039   0.098789  ...            0 -0.969609  0.095786     0.990122   9.869224
1      MedInc       1        [1.90, 2.16)   1109   0.053731  ...            0 -0.836618  0.044952     0.990122  10.896940
2      MedInc       2        [2.16, 2.37)   1049   0.050824  ...            0 -0.760779  0.038666     0.990122  11.482997
3      MedInc       3        [2.37, 2.66)   1551   0.075145  ...            0 -0.615224  0.046231     0.990122  12.607805
4      MedInc       4        [2.66, 2.88)   1075   0.052083  ...            0 -0.485655  0.025295     0.990122  13.609078
..        ...     ...                 ...    ...        ...  ...          ...       ...       ...          ...        ...
2   Longitude       2  [-118.33, -118.26)   1120   0.054264  ...            0 -0.011006  0.000597     0.566265  10.470401
3   Longitude       3  [-118.26, -118.16)   1127   0.054603  ...            0 -0.322802  0.017626     0.566265   9.092391
4   Longitude       4      [-118.16, inf)   6530   0.316376  ...            0 -0.066773  0.021125     0.566265  10.223936
5   Longitude       5             Special      0   0.000000  ...            0 -2.068558  0.000000     0.566265   1.376862
6   Longitude       6             Missing      0   0.000000  ...            0 -2.068558  0.000000     0.566265   1.376862

[94 rows x 14 columns]

Compute score and predicted target using the fitted estimator.

score = scorecard.score(X)
y_pred = scorecard.predict(X)

First, we load the dataset and a scorecard previously developed.

import pandas as pd

from optbinning import Scorecard
from optbinning.scorecard import Counterfactual

from sklearn.datasets import load_boston

data = load_boston()
X = pd.DataFrame(data.data, columns=data.feature_names)

scorecard = Scorecard.load("myscorecard.pkl")

We create a new Counterfactual instance that is fitted with the dataset used during the scorecard development. Then, we select a sample from which to generate counterfactual explanations.

cf = Counterfactual(scorecard=scorecard)
cf.fit(X)

query = X.iloc[0, :].to_frame().T

The scorecard model predicts 26.8. However, we would like to find out what needs to be changed to return a prediction greater or equal to 30.

>>> query
      CRIM    ZN  INDUS  CHAS    NOX     RM   AGE   DIS  RAD    TAX  PTRATIO      B  LSTAT
0  0.00632  18.0   2.31   0.0  0.538  6.575  65.2  4.09  1.0  296.0     15.3  396.9   4.98

>>> scorecard.predict(query)
array([26.83423364])

We can generate a single counterfactual explanation:

>>> cf.generate(query=query, y=30, outcome_type="continuous", n_cf=1, max_changes=3,
                hard_constraints=["min_outcome"])

>>> cf.status
'OPTIMAL'

>>> cf.display(show_only_changes=True, show_outcome=True)
           CRIM ZN INDUS CHAS           NOX            RM AGE DIS RAD TAX PTRATIO  B LSTAT   outcome
0  [0.04, 0.07)  -     -    -  [0.45, 0.50)  [6.94, 7.44)   -   -   -   -       -  -     -  31.28763

Or simultaneously three counterfactuals, enforcing diversity on the feature values and selecting only a few actionable features.

>>> cf.generate(query=query, y=30, outcome_type="continuous", n_cf=3, max_changes=3,
                hard_constraints=["diversity_values", "min_outcome"],
                actionable_features=["CRIM", "NOX", "RM", "PTRATIO"])

>>> cf.status
'OPTIMAL'

>>> cf.display(show_only_changes=True, show_outcome=True)
           CRIM ZN INDUS CHAS           NOX            RM AGE DIS RAD TAX         PTRATIO  B LSTAT    outcome
0  [0.03, 0.04)  -     -    -  [0.42, 0.45)  [6.94, 7.44)   -   -   -   -               -  -     -  31.737844
0  [0.04, 0.07)  -     -    -             -   [7.44, inf)   -   -   -   -  [17.85, 18.55)  -     -  36.370086
0             -  -     -    -  [0.45, 0.50)  [6.68, 6.94)   -   -   -   -   [-inf, 15.15)  -     -  30.095258

The following table shows how OptBinning compares to scorecardpy 0.1.9.1.1 on a selection of variables from the public dataset, Home Credit Default Risk - Kaggle’s competition Link. This dataset contains 307511 samples.The experiments were run on Intel(R) Core(TM) i5-3317 CPU at 1.70GHz, using a single core, running Linux. For scorecardpy, we use default settings only increasing the maximum number of bins bin_num_limit=20. For OptBinning, we use default settings (max_n_prebins=20) only changing the maximum allowed p-value between consecutive bins, max_pvalue=0.05.

To compare softwares we use the shifted geometric mean, typically used in mathematical optimization benchmarks: http://plato.asu.edu/bench.html. Using the shifted (by 1 second) geometric mean we found that OptBinning is 17x faster than scorecardpy, with an average IV increment of 12%. Besides the speed and IV gains, OptBinning includes many more constraints and monotonicity options.

Variable scorecardpy_time scorecardpy_IV optbinning_time optbinning_IV
AMT_INCOME_TOTAL 6.18 s 0.010606 0.363 s 0.011705
NAME_CONTRACT_TYPE (C) 3.72 s 0.015039 0.148 s 0.015039
AMT_CREDIT 7.10 s 0.053593 0.634 s 0.059311
ORGANIZATION_TYPE (C) 6.31 s 0.063098 0.274 s 0.071520
AMT_ANNUITY 6.51 s 0.024295 0.648 s 0.031179
AMT_GOODS_PRICE 6.95 s 0.056923 0.401 s 0.092032
NAME_HOUSING_TYPE (C) 3.57 s 0.015055 0.140 s 0.015055
REGION_POPULATION_RELATIVE 4.33 s 0.026578 0.392 s 0.035567
DAYS_BIRTH 5.18 s 0.081270 0.564 s 0.086539
OWN_CAR_AGE 4.85 s 0.021429 0.055 s 0.021890
OCCUPATION_TYPE (C) 4.24 s 0.077606 0.201 s 0.079540
APARTMENTS_AVG 5.61 s 0.032247(*) 0.184 s 0.032415
BASEMENTAREA_AVG 5.14 s 0.022320 0.119 s 0.022639
YEARS_BUILD_AVG 4.49 s 0.016033 0.055 s 0.016932
EXT_SOURCE_2 5.21 s 0.298463 0.606 s 0.321417
EXT_SOURCE_3 5.08 s 0.316352 0.303 s 0.334975
TOTAL 84.47 s 1.130907 5.087 s 1.247756

(C): categorical variable. (*): max p-value between consecutive bins > 0.05.

The binning of variables with monotonicity trend peak or valley can benefit from the option monotonic_trend="auto_heuristic" at the expense of finding a suboptimal solution for some cases. The following table compares the options monotonic_trend="auto" and monotonic_trend="auto_heuristic",

Variable auto_time auto_IV heuristic_time heuristic_IV
AMT_INCOME_TOTAL 0.363 s 0.011705 0.322 s 0.011705
AMT_CREDIT 0.634 s 0.059311 0.469 s 0.058643
AMT_ANNUITY 0.648 s 0.031179 0.505 s 0.031179
AMT_GOODS_PRICE 0.401 s 0.092032 0.299 s 0.092032
REGION_POPULATION_RELATIVE 0.392 s 0.035567 0.244 s 0.035567
TOTAL 2.438 s 0.229794 1.839 s 0.229126

Observe that CPU time is reduced by 25% losing less than 1% in IV. The differences in CPU time are more noticeable as the number of bins increases, see http://gnpalencia.org/optbinning/tutorials/tutorial_binary_large_scale.html.

Found a bug? Want to contribute with a new feature, improve documentation, or add examples? We encourage you to create pull requests and/or open GitHub issues. Thanks! :octocat: 🎉 👍

We would like to list companies using OptBinning. Please send a PR with your company name and @githubhandle if you may.

Currently officially using OptBinning:

  1. Jeitto [@BrennerPablo & @ds-mauri & @GabrielSGoncalves]
  2. Bilendo [@FlorianKappert & @JakobBeyer]
  3. Aplazame
  4. Praelexis Credit
  5. ING
  6. DBRS Morningstar
  7. Loginom
  8. Risika
  9. Tamara
  10. BBVA AI Factory
  11. N26
  12. Home Credit International
  13. Farm Credit Canada

If you use OptBinning in your research/work, please cite the paper using the following BibTeX:

@article{Navas-Palencia2020OptBinning,
  title     = {Optimal binning: mathematical programming formulation},
  author    = {Guillermo Navas-Palencia},
  year      = {2020},
  eprint    = {2001.08025},
  archivePrefix = {arXiv},
  primaryClass = {cs.LG},
  volume    = {abs/2001.08025},
  url       = {http://arxiv.org/abs/2001.08025},
}

@article{Navas-Palencia2021Counterfactual,
  title     = {Optimal Counterfactual Explanations for Scorecard modelling},
  author    = {Guillermo Navas-Palencia},
  year      = {2021},
  eprint    = {2104.08619},
  archivePrefix = {arXiv},
  primaryClass = {cs.LG},
  volume    = {abs/2104.08619},
  url       = {http://arxiv.org/abs/2104.08619},
}

About

Optimal binning: monotonic binning with constraints. Support batch & stream optimal binning. Scorecard modelling and counterfactual explanations.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%