Skip to content

laymond1/Measuring-HAR-Model-Latency

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

78 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

실험 코드 정리

PPT 실험 파트 구성 순서에 따라 코드 설명

Efficiency 관련 코드

  • Model 종류:
    • Vision / HAR / HARNAS
  • Metric 종류:
    • Size(MB) / FLOPs(M) / PC:GPU(ms) / Nano:CPU(s) / Nano:GPU(ms) / Smartphone:A31-CPU(ms)
  • Device 종류:
    • PC / Nano / Smartphone
Model Size(MB) FLOPs(M) PC:GPU(ms) Nano:CPU(s) Nano:GPU(ms) Smartphone:A31-CPU(ms)
Vision - - - - - -
HAR - - - - - -
HARNAS - - - - - -

✨ 대부분의 실험은 쥬피터 노트북에 정리되어 있음.

  1. measure metrics:
>>> python ./ea_harnas/measure_metrics.py --dataset $data --arch EANAS
>>> python ./rl_harnas/measure_metrics.py --dataset $data --arch RLNAS
>>> python ./dnas_harnas/measure_metrics.py --dataset $data --arch OPPA31
  1. measure latency:
>>> python ./ea_harnas/measure_latency.py --dataset $data --arch EANAS --num-runs 100 --hardware pc --device gpu
>>> python ./rl_harnas/measure_latency.py --dataset $data --arch RLNAS --num-runs 100 --hardware pc --device gpu
>>> python ./dnas_harnas/measure_latency.py --dataset $data --arch OPPA31 --num-runs 100 --hardware pc --device gpu
  1. convert the model(or blocks) for smartphone
>>> python ./convert_models/convert_har_mobile.py --dataset $data --arch EANAS
>>> python ./convert_models/convert_harblock_mobile.py --dataset $data --arch EANAS
>>> python ./convert_models/convert_vision_mobile.py --dataset $data --arch RLNAS
>>> python ./convert_models/convert_visblock_mobile.py --dataset $data --arch RLNAS
>>> python ./convert_models/convert_harnas_mobile.py --dataset $data --arch RLNAS

Performance(F1-Score) 관련 코드

  • Model 종류:
    • Vision / HAR / HARNAS
  • Dataset 종류:
    • UCI-HAR / WISDM / UniMiB-SHAR / OPPORTUNITY / KU-HAR
Model UCI-HAR WISDM UniMiB-SHAR OPPORTUNITY KU-HAR
Vision - - - - -
HAR - - - - -
HARNAS - - - - -
  1. HAR Model train

    • run_har 디렉토리의 bash 실행
  2. Vision Model train

    • run_vis_{dataset} 디렉토리의 bash 실행
    • 각 데이터셋 별로 따로 디렉토리 구성
  3. HARNAS Model train

    • run_harnas 디렉토리의 bash 실행

HARNAS Model

HARNAS의 model들은 기본적으로 OPPORTUNITY 데이터셋에 최적인 모델 활용.

  • RL-based NAS

    • OPPORTUNITY MODEL
    • Dataset이 OPPORTUNITY만 활용됨.
    • Pellatt, Lloyd, and Daniel Roggen. “Fast Deep Neural Architecture Search for Wearable Activity Recognition by Early Prediction of Converged Performance.” In 2021 International Symposium on Wearable Computers, 1–6, 2021.
  • EA-based NAS

    • OPPORTUNITY MODEL
    • OPPORTUNITY dataset에 최적인 model을 다른 dataset에 directly 적용했다고 논문들에서 언급하고 있음.
    • Wang, Xiaojuan, Xinlei Wang, Tianqi Lv, Lei Jin, and Mingshu He. “HARNAS: Human Activity Recognition Based on Automatic Neural Architecture Search Using Evolutionary Algorithms.” Sensors 21, no. 20 (October 19, 2021): 6927. https://doi.org/10.3390/s21206927.
  • DNAS-based NAS

    • OPPORTUNITY A31 MODEL
    • 위 논문들을 따라 OPPORTUNITY을 활용하여 탐색한 모델 제시.
    • Lim, Won-Seon, Wangduk Seo, Dae-Won Kim, and Jaesung Lee. “Efficient Human Activity Recognition Using Lookup Table-Based Neural Architecture Search for Mobile Devices.” IEEE Access 11 (2023): 71727–38. https://doi.org/10.1109/ACCESS.2023.3294564.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published