If you find any typo or mistake in the note, feel free to fix them and create a PR or create an issue so I can fix them.
-
Full Note or use the web version at http://garryliun.github.io/assets/full_note.html
- for full_note.md, use Visual Studio Code with Markdown All in One and Markdown+Math extensions to render markdown files, or
- use StackEdit to view it online
-
- Fundamental of Probability
- Probability Models
- Conditional Probability
- Fundamental of Probability
-
- Fundamental of Probability(cont'd)
- Independence
- Bayes' rule
- Random variables and distributions
- Discrete random variables and distribution
- Bernoulli distribution
- Binomial distribution
- Geometric distribution
- Discrete random variables and distribution
- Fundamental of Probability(cont'd)
-
- Random variables and distributions (cont'd)
- Discrete random variables and distribution (cont'd)
- Geometric distribution
- Poisson distribution
- Continuous random variables and distributions
- Exponential distribution
- Joint distribution
- Expectation
- Discrete random variables and distribution (cont'd)
- Random variables and distributions (cont'd)
-
- Random variables and distributions (cont'd)
- Expectation (cont'd)
- Properties of expectation
- Indicator
- Expectation (cont'd)
- Random variables and distributions (cont'd)
-
- Random variables and distributions (cont'd)
- Indicator (cont'd)
- Moment generating function (mgf)
- Joint mgf
- Random variables and distributions (cont'd)
-
- Conditional distribution and conditional expectation
- Conditional distribution
- Conditional expectation
- Conditional distribution and conditional expectation
-
- Conditional distribution and conditional expectation (cont'd)
- Conditional expectation (cont'd)
- Decomposition of variance (Conditional variance)
- Conditional distribution and conditional expectation (cont'd)
-
- 4. Stochastic Processes
- Simple random walk
- 4. Stochastic Processes
-
- 4. Stochastic Processes (cont'd)
- Markov Chain
- One-step transition probability matrix
- 4. Stochastic Processes (cont'd)
-
Lecture 10(pdf) - February 07
- 4. Stochastic Processes (cont'd)
- Chapman-Kolmogorov equations
- Stationary distribution (invariant distribution)
- 4. Stochastic Processes (cont'd)
-
Lecture 11(pdf) - February 14
- 4. Stochastic Processes (cont'd)
- Stationary distribution (invariant distribution)(cont'd)
- Classification of States
- Transience and recurrence
- 4. Stochastic Processes (cont'd)
-
Lecture 12(pdf) - February 26
- 4. Stochastic Processes (cont'd)
- Stationary distribution (invariant distribution)(cont'd)
- Classification of States
- Periodicity
- Equivalent classes and irreducibility
- Assessable
- Communicate
- Class
- Irreducible
- 4. Stochastic Processes (cont'd)
-
Lecture 13(pdf) - February 28
- 4. Stochastic Processes (cont'd)
- Stationary distribution (invariant distribution)(cont'd)
- Classification of States
- Periodicity
- Equivalent classes and irreducibility
- Proposition
- Limiting Distribution
- Basic Limit Theorem
- 4. Stochastic Processes (cont'd)
-
Lecture 13(pdf) - February 28
- 4. Stochastic Processes (cont'd)
- Stationary distribution (invariant distribution)(cont'd)
- Classification of States
- Periodicity
- Equivalent classes and irreducibility
- Proposition
- Limiting Distribution
- Basic Limit Theorem
- 4. Stochastic Processes (cont'd)
-
Lecture 14(pdf) - March 05
- 4. Stochastic Processes (cont'd)
- Limiting Distribution
- Examples
- 4.6 Generating function and branching processes
- Properties of generating function
- Limiting Distribution
- 4. Stochastic Processes (cont'd)
-
Lecture 15(pdf) - March 07
- 4. Stochastic Processes (cont'd)
- 4.6 Generating function and branching processes
- Properties of generating function (cont'd)
- 4.6.1. Branching Process
- 4.6.1.1. Mean and variance
- 4.6.1.2.Extinction Probability
- 4.6 Generating function and branching processes
- 4. Stochastic Processes (cont'd)
-
Lecture 16(pdf) - March 12
- 4. Stochastic Processes (cont'd)
- 4.6. Generating function and branching processes (cont'd)
- 4.6.1. Branching Process (cont'd)
- 4.6.1.2. Extinction Probability (cont'd)
- 4.6.1. Branching Process (cont'd)
- 4.6. Generating function and branching processes (cont'd)
- 5. Poisson Processes
- 5.1. Counting Process
- 5.2. Definition of Poisson Process
- 4. Stochastic Processes (cont'd)
-
Lecture 17(pdf) - March 12
- 5. Poisson Processes (cont'd)
- 5.3. Properties of Poisson Processes
- 5.3.1. Continuous-time Markov Property
- 5.3.1.1. Independent Increments
- 5.3.1.2. Poisson Increments
- 5.3.1.3. Combining and Thining of Poisson Process
- 5.3.1. Continuous-time Markov Property
- 5.3. Properties of Poisson Processes
- 5. Poisson Processes (cont'd)
-
Lecture 18(pdf) - March 19
- 5. Poisson Processes (cont'd)
- 5.3. Properties of Poisson Processes (cont'd)
- 5.3.1. Continuous-time Markov Property (cont'd)
- 5.3.1.3. Combining and Thinning of Poisson Process (cont'd)
- 5.3.1.4 Order Statistics Property
- 5.3.1. Continuous-time Markov Property (cont'd)
- 5.3. Properties of Poisson Processes (cont'd)
- 6. Continuous-Time Markov Chain
- 6.1. Definitions and Structures
- Definition 6.1.1. Continuous-time Stochastic Process
- 6.1. Definitions and Structures
- 5. Poisson Processes (cont'd)
-
Lecture 19(pdf) - March 21
- 6. Continuous-Time Markov Chain
- 6.1. Definitions and Structures
- Definition 6.1.1. Continuous-time Stochastic Process
- Example 6.1.1.1.
- 6.1. Definitions and Structures
- 6. Continuous-Time Markov Chain