You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
As we see, there are two main types of birth and death processes: queueing system and population model. THe key difference between them is that the birth rate in the queueing system is typically a constant (does not depend on the current state $i$), while the birth rate in population model increases as $i$ increases.
6.5.1. Stationary Distribution of a Birth and Death Process
\end{aligned}
$$
Add this to the first equation, we have
$$ -\lambda_1\pi_1+\mu_2\pi_2 = 0 \Rightarrow\pi_2=\frac{\lambda_1}{\mu_2}\pi_1 $$
In general, adding the first $i$ equations, we have
$$ -\lambda_0\pi_0+\mu_1\pi_1= 0 $$
$$ \lambda_0\pi_0-(\lambda_1+\mu_1)\pi_1+\mu_2\pi_2=0 $$
$$ \vdots $$
$$ \lambda_{i-2}\pi_{i-2}-(\lambda_{i-1}+\mu_{i-1}+\mu_i\pi_i)=0 $$
$$ -\lambda_{i-1}\pi_{i-1}+\mu_i\pi_i=0 $$
$$ \begin{aligned}
\Rightarrow \pi_i &= \frac{\lambda_{i-1}}{\mu_i}\pi_{i-1}\
&=\cdots\
&=\frac{\lambda_0\lambda_1\cdots\lambda_{i-1}}{\mu_1\mu_2\cdots\mu_i}\pi_0
\end{aligned} $$
Use $(2)$ to normalize
$$ 1=\sum_{n=0}^\infty \pi_n = (1+\sum_{n=1}^{\infty}\Pi_{j=1}^n\frac{\lambda_{j-1}}{\mu_j} $$
$$
\begin{aligned}
\Rightarrow
&\pi_0=\frac{1}{1+\sum_{n=1}^\infty\Pi_{j=1}^n\frac{\lambda_{j-1}}{\mu_j}}\
&\pi_i=\frac{\Pi_{j=1}^i\frac{\lambda_{j-1}}{\mu_j}}{1+\sum_{n=1}^\infty\Pi_{j=1}^n\frac{\lambda_{j-1}}{\mu_j}}
\end{aligned}
$$
Thus, a stationary distribution exists(the MC is positive recurrent, assuming irreducible) if and only if
$$ \sum_{n=1}^\infty\Pi_{j=1}^n\frac{\lambda_{j-1}}{\mu_j } < \infty $$
$$
\begin{aligned}
&\sum_{n=1}^\infty \Pi_{j=1}^n\frac{\lambda_{j-1}}{\mu_j}\\
&= \underbrace{\frac{\lambda}{\mu}+\frac{\lambda}{\mu}\cdot\frac{\lambda}{2\mu}+\cdots+\frac{\lambda}{\mu}\frac{\lambda}{2\mu}\cdots\frac{\lambda}{s\mu} + \frac{\lambda}{\mu}\frac{\lambda}{2\mu}\cdots(\frac{\lambda}{s\mu})^2+\frac{\lambda}{\mu}\frac{\lambda}{2\mu}\cdots(\frac{\lambda}{s\mu})^3+\cdots}_{\text{geometric series with ration $\frac{\lambda}{s\mu}$}}
\end{aligned}
$$
$\Rightarrow$ The sum is finite if and only if $\lambda<s\mu$
$\Rightarrow$ the process ${X(t)}{t\geq 0}$ is positive recurrent if and only if $\underbrace{\lambda}{\text{arrival rate}} < \underbrace{s\mu}_{\text{maximal (total) service rate}}$
Example 6.5.1.2. Population Model (with immigration)
$$
\sum_{n=1}^\infty \Pi_{j=1}^n\frac{\lambda_{j-1}}{\mu_j} = \sum_{n=1}^\infty\Pi_{j=1}^n\frac{(j-1)\lambda+\alpha}{j\mu}
$$
$$
\lim_{j\rightarrow\infty}\frac{(j-1)\lambda+\alpha}{j\mu}=\frac{\lambda}{\mu}
$$
If $\lambda<\mu$, then $\quad\sum_{n=1}^\infty\Pi_{j=1}^n\frac{(j-1)\lambda+\alpha}{j\mu}<\infty$ by ratio test.
If $\lambda>\mu$, then $\quad\sum_{n=1}^\infty\Pi_{j=1}^n\frac{(j-1)\lambda+\alpha}{j\mu}=\infty$.
If $\lambda=\mu$, then $\quad\alpha \geq \lambda =\mu$, the ratio $\frac{(j-1)\lambda+\alpha}{j\mu}\geq 1$ for all $j$
$\Rightarrow$ the terms in the summation is non-decreasing
But the chain does not necessarily end up with being in state $0$, because it can also have $X(t)\rightarrow\infty$. Whether this is a possibility depends on the relation between ${\lambda_i}$ and ${\mu_i}$.