forked from tensorflow/tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding TensorSpec to represent the specification of Tensors.
PiperOrigin-RevId: 184594856
- Loading branch information
1 parent
c8674c8
commit 2074a56
Showing
4 changed files
with
462 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,201 @@ | ||
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
"""A TensorSpec class.""" | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import numpy as np | ||
|
||
from tensorflow.python.framework import common_shapes | ||
from tensorflow.python.framework import dtypes | ||
from tensorflow.python.framework import ops | ||
from tensorflow.python.framework import tensor_shape | ||
|
||
|
||
class TensorSpec(object): | ||
"""Describes a tf.Tensor. | ||
A TensorSpec allows an API to describe the Tensors that it accepts or | ||
returns, before that Tensor exists. This allows dynamic and flexible graph | ||
construction and configuration. | ||
""" | ||
|
||
__slots__ = ["_shape", "_dtype", "_name"] | ||
|
||
def __init__(self, shape, dtype, name=None): | ||
"""Creates a TensorSpec. | ||
Args: | ||
shape: Value convertible to `tf.TensorShape`. The shape of the tensor. | ||
dtype: Value convertible to `tf.DType`. The type of the tensor values. | ||
name: Optional name for the Tensor. | ||
Raises: | ||
TypeError: If shape is not convertible to a `tf.TensorShape`, or dtype is | ||
not convertible to a `tf.DType`. | ||
""" | ||
self._shape = tensor_shape.TensorShape(shape) | ||
self._dtype = dtypes.as_dtype(dtype) | ||
self._name = name | ||
|
||
@classmethod | ||
def from_spec(cls, spec, name=None): | ||
return cls(spec.shape, spec.dtype, name or spec.name) | ||
|
||
@classmethod | ||
def from_tensor(cls, tensor, name=None): | ||
if isinstance(tensor, ops.EagerTensor): | ||
return TensorSpec(tensor.shape, tensor.dtype, name) | ||
elif isinstance(tensor, ops.Tensor): | ||
return TensorSpec(tensor.shape, tensor.dtype, name or tensor.op.name) | ||
else: | ||
raise ValueError("`tensor` should be a tf.Tensor") | ||
|
||
@property | ||
def shape(self): | ||
"""Returns the `TensorShape` that represents the shape of the tensor.""" | ||
return self._shape | ||
|
||
@property | ||
def dtype(self): | ||
"""Returns the `dtype` of elements in the tensor.""" | ||
return self._dtype | ||
|
||
@property | ||
def name(self): | ||
"""Returns the name of the described tensor.""" | ||
return self._name | ||
|
||
def is_compatible_with(self, spec_or_tensor): | ||
"""True if the shape and dtype of `spec_or_tensor` are compatible.""" | ||
return (self._dtype.is_compatible_with(spec_or_tensor.dtype) and | ||
self._shape.is_compatible_with(spec_or_tensor.shape)) | ||
|
||
def __repr__(self): | ||
return "TensorSpec(shape={}, dtype={}, name={})".format( | ||
self.shape, repr(self.dtype), repr(self.name)) | ||
|
||
def __eq__(self, other): | ||
return self.shape == other.shape and self.dtype == other.dtype | ||
|
||
def __ne__(self, other): | ||
return not self == other | ||
|
||
|
||
class BoundedTensorSpec(TensorSpec): | ||
"""A `TensorSpec` that specifies minimum and maximum values. | ||
Example usage: | ||
```python | ||
spec = tensor_spec.BoundedTensorSpec((1, 2, 3), tf.float32, 0, (5, 5, 5)) | ||
tf_minimum = tf.convert_to_tensor(spec.minimum, dtype=spec.dtype) | ||
tf_maximum = tf.convert_to_tensor(spec.maximum, dtype=spec.dtype) | ||
``` | ||
Bounds are meant to be inclusive. This is especially important for | ||
integer types. The following spec will be satisfied by tensors | ||
with values in the set {0, 1, 2}: | ||
```python | ||
spec = tensor_spec.BoundedTensorSpec((3, 5), tf.int32, 0, 2) | ||
``` | ||
""" | ||
|
||
__slots__ = ("_minimum", "_maximum") | ||
|
||
def __init__(self, shape, dtype, minimum, maximum, name=None): | ||
"""Initializes a new `BoundedTensorSpec`. | ||
Args: | ||
shape: Value convertible to `tf.TensorShape`. The shape of the tensor. | ||
dtype: Value convertible to `tf.DType`. The type of the tensor values. | ||
minimum: Number or sequence specifying the minimum element bounds | ||
(inclusive). Must be broadcastable to `shape`. | ||
maximum: Number or sequence specifying the maximum element bounds | ||
(inclusive). Must be broadcastable to `shape`. | ||
name: Optional string containing a semantic name for the corresponding | ||
array. Defaults to `None`. | ||
Raises: | ||
ValueError: If `minimum` or `maximum` are not provided or not | ||
broadcastable to `shape`. | ||
TypeError: If the shape is not an iterable or if the `dtype` is an invalid | ||
numpy dtype. | ||
""" | ||
super(BoundedTensorSpec, self).__init__(shape, dtype, name) | ||
|
||
if minimum is None or maximum is None: | ||
raise ValueError("minimum and maximum must be provided; but saw " | ||
"'%s' and '%s'" % (minimum, maximum)) | ||
|
||
try: | ||
minimum_shape = np.shape(minimum) | ||
common_shapes.broadcast_shape( | ||
tensor_shape.TensorShape(minimum_shape), self.shape) | ||
except ValueError as exception: | ||
raise ValueError("minimum is not compatible with shape. " | ||
"Message: {!r}.".format(exception)) | ||
|
||
try: | ||
maximum_shape = np.shape(maximum) | ||
common_shapes.broadcast_shape( | ||
tensor_shape.TensorShape(maximum_shape), self.shape) | ||
except ValueError as exception: | ||
raise ValueError("maximum is not compatible with shape. " | ||
"Message: {!r}.".format(exception)) | ||
|
||
self._minimum = np.array(minimum, dtype=self.dtype.as_numpy_dtype()) | ||
self._minimum.setflags(write=False) | ||
|
||
self._maximum = np.array(maximum, dtype=self.dtype.as_numpy_dtype()) | ||
self._maximum.setflags(write=False) | ||
|
||
@classmethod | ||
def from_spec(cls, spec): | ||
dtype = dtypes.as_dtype(spec.dtype) | ||
if dtype in [dtypes.float64, dtypes.float32]: | ||
# Avoid under/over-flow for `dtype.maximum - dtype.minimum`. | ||
low = dtype.min / 2 | ||
high = dtype.max / 2 | ||
else: | ||
low = dtype.min | ||
high = dtype.max | ||
|
||
minimum = getattr(spec, "minimum", low) | ||
maximum = getattr(spec, "maximum", high) | ||
return BoundedTensorSpec(spec.shape, dtype, minimum, maximum, spec.name) | ||
|
||
@property | ||
def minimum(self): | ||
"""Returns a NumPy array specifying the minimum bounds (inclusive).""" | ||
return self._minimum | ||
|
||
@property | ||
def maximum(self): | ||
"""Returns a NumPy array specifying the maximum bounds (inclusive).""" | ||
return self._maximum | ||
|
||
def __repr__(self): | ||
s = "BoundedTensorSpec(shape={}, dtype={}, name={}, minimum={}, maximum={})" | ||
return s.format(self.shape, repr(self.dtype), repr(self.name), | ||
repr(self.minimum), repr(self.maximum)) | ||
|
||
def __eq__(self, other): | ||
tensor_spec_eq = super(BoundedTensorSpec, self).__eq__(other) | ||
return (tensor_spec_eq and np.allclose(self.minimum, other.minimum) and | ||
np.allclose(self.maximum, other.maximum)) | ||
|
||
|
Oops, something went wrong.