forked from alirezadir/Machine-Learning-Interviews
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Alireza Dirafzoon
committed
Mar 15, 2023
1 parent
53adc17
commit bf182d5
Showing
8 changed files
with
3,510 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "functional-corrections", | ||
"metadata": {}, | ||
"source": [ | ||
"## K-means with multi-dimensional data\n", | ||
" \n", | ||
"$X_{n \\times d}$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "formal-antique", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import time" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "durable-horse", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"n, d, k=1000, 20, 4\n", | ||
"max_itr=100" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "egyptian-omaha", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"X=np.random.random((n,d))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "employed-helen", | ||
"metadata": {}, | ||
"source": [ | ||
"$$ argmin_j ||x_i - c_j||_2 $$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"id": "center-timer", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def k_means(X, k):\n", | ||
" #Randomly Initialize Centroids\n", | ||
" np.random.seed(0)\n", | ||
" C= X[np.random.randint(n,size=k),:]\n", | ||
" E=np.float('inf')\n", | ||
" for itr in range(max_itr):\n", | ||
" \n", | ||
" # Find the distance of each point from the centroids \n", | ||
" E_prev=E\n", | ||
" E=0\n", | ||
" center_idx=np.zeros(n)\n", | ||
" for i in range(n):\n", | ||
" min_d=np.float('inf')\n", | ||
" c=0\n", | ||
" for j in range(k):\n", | ||
" d=np.linalg.norm(X[i,:]-C[j,:],2)\n", | ||
" if d<min_d:\n", | ||
" min_d=d\n", | ||
" c=j\n", | ||
" \n", | ||
" E+=min_d\n", | ||
" center_idx[i]=c\n", | ||
" \n", | ||
" #Find the new centers\n", | ||
" for j in range(k):\n", | ||
" C[j,:]=np.mean( X[center_idx==j,:] ,0)\n", | ||
" \n", | ||
" if itr%10==0:\n", | ||
" print(E)\n", | ||
" if E_prev==E:\n", | ||
" break\n", | ||
" \n", | ||
" return C, E, center_idx" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "material-hayes", | ||
"metadata": {}, | ||
"source": [ | ||
"$$ argmin_j ||x_i - c_j||_2 $$\n", | ||
"\n", | ||
"$$||x_i - c_j||_2 = \\sqrt{(x_i - c_j)^T (x_i-c_j)} = \\sqrt{x_i^T x_i -2 x_i^T c_j + c_j^T c_j} $$\n", | ||
"\n", | ||
"- $ diag(X~X^T)$, can be used to get $x_i^T x_i$\n", | ||
"\n", | ||
"- $X~C^T $, can be used to get $x_i^T c_j$\n", | ||
"\n", | ||
"- $diag(C~C^T)$, can be used to get $c_j^T c_j$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"id": "colored-linux", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def k_means_vectorized(X, k):\n", | ||
" \n", | ||
" #Randomly Initialize Centroids\n", | ||
" np.random.seed(0)\n", | ||
" C= X[np.random.randint(n,size=k),:]\n", | ||
" E=np.float('inf')\n", | ||
" for itr in range(max_itr):\n", | ||
" # Find the distance of each point from the centroids \n", | ||
" XX= np.tile(np.diag(np.matmul(X, X.T)), (k,1) ).T\n", | ||
" XC=np.matmul(X, C.T)\n", | ||
" CC= np.tile(np.diag(np.matmul(C, C.T)), (n,1)) \n", | ||
"\n", | ||
" D= np.sqrt(XX-2*XC+CC)\n", | ||
"\n", | ||
" # Assign the elements to the centroids:\n", | ||
" center_idx=np.argmin(D, axis=1)\n", | ||
"\n", | ||
" #Find the new centers\n", | ||
" for j in range(k):\n", | ||
" C[j,:]=np.mean( X[center_idx==j,:] ,0)\n", | ||
"\n", | ||
" #Find the error\n", | ||
" E_prev=E\n", | ||
" E=np.sum(D[np.arange(n),center_idx])\n", | ||
" if itr%10==0:\n", | ||
" print(E)\n", | ||
" if E_prev==E:\n", | ||
" break\n", | ||
" \n", | ||
" return C, E, center_idx" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"id": "equivalent-platinum", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"1517.502248752696\n", | ||
"1218.91004301866\n", | ||
"1217.362137659097\n", | ||
"0.8816308975219727 seconds\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"start=time.time()\n", | ||
"C, E, center_idx = k_means(X, k)\n", | ||
"print(time.time()-start,'seconds')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"id": "environmental-steam", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"1517.502248752696\n", | ||
"1218.9100430186547\n", | ||
"1217.3621376590977\n", | ||
"0.09020209312438965 seconds\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"start=time.time()\n", | ||
"C, E, center_idx = k_means_vectorized(X, k)\n", | ||
"print(time.time()-start,'seconds')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "north-picking", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.7" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.