Redefining Team Collaboration:
An open-source platform that fuses human and AI capabilities to achieve task automation, intelligent decision-making, and full-process visualization, unlocking limitless productivity and driving organizations toward a smarter future.
- Task Automation: Use intelligent agents to break down and execute tasks, minimizing repetitive work.
- Workflow Management: A modular workflow designer supports multi-step task flows for complex business scenarios.
- Real-Time Collaboration: Seamless integration of humans and AI agents to boost team efficiency.
- Global Transparency: Dashboards provide complete oversight of task progress, resource allocation, and team activity.
- Agent Customization: Easily create versatile agents for various use cases.
- Workflow Design: Drag-and-drop workflow nodes to implement complex logic quickly.
- Knowledge Base Support: Integrate multiple document formats and automatically parse content for agent use.
- Skill Expansion: Custom Python scripting for flexible solutions to specific needs.
There are two deployment methods: docker compose deployment and source code deployment
See Install Docker and Install Docker Compose to complete the Docker and Docker Compose installation. Use the docker-compose
or docker compose
command depending on your Docker Compose version.
See Installing the NVIDIA Container Toolkit to enable GPU support in Docker containers.
Clone the NexusAI source code to your local environment
git clone https://github.com/EDEAI/NexusAI.git
cd NexusAI
mkdir -p models storage
chmod 777 storage
# Enter the model directory
cd models
# Clone all models
apt install git-lfs
git clone https://huggingface.co/GanymedeNil/text2vec-large-chinese
git clone https://huggingface.co/BAAI/bge-reranker-v2-m3
If you want to enable Milvus authentication, refer to Milvus Authentication to set up Milvus authentication and modify the milvus-standalone service settings in docker-compose.yml
Enter the Docker directory of the NexusAI source code
cd NexusAI/docker
Copy docker-compose.yml
and replace SANDBOX_HOST
with the real IP address of the host
cp docker-compose.yml.template docker-compose.yml
Start all Docker containers
docker-compose up -d
After running the command, you should see output similar to the following, showing the status of all containers
[+] Running 15/15
✔ Network docker_my_network Created 0.1s
✔ Volume "docker_mysql_data" Created 0.0s
✔ Volume "docker_minio_data" Created 0.0s
✔ Volume "docker_milvus_data" Created 0.0s
✔ Volume "docker_etcd_data" Created 0.0s
✔ Volume "docker_redis_data" Created 0.0s
✔ Container nexusai-docker-sandbox Started 2.6s
✔ Container nexusai-docker-milvus-etcd Started 2.6s
✔ Container nexusai-docker-nginx Started 2.6s
✔ Container nexusai-docker-milvus-minio Started 2.6s
✔ Container nexusai-docker-redis Started 2.6s
✔ Container nexusai-docker-web Started 2.6s
✔ Container nexusai-docker-mariadb Started 2.5s
✔ Container nexusai-docker-milvus-standalone Started 2.4s
✔ Container nexusai-docker-multi-service Started 5.5s
Finally, you can check whether all containers are running normally
docker-compose ps
In the output below, you can see three business service containers nexusai-docker-multi-service
nexusai-docker-web
, and the rest are basic service containers
NAME IMAGE COMMAND SERVICE CREATED STATUS PORTS
nexusai-docker-mariadb mariadb:11.4 "docker-entrypoint.s…" mariadb 50 minutes ago Up 50 minutes 0.0.0.0:9461->3306/tcp
nexusai-docker-milvus-etcd quay.io/coreos/etcd:v3.5.5 "etcd -advertise-cli…" etcd 50 minutes ago Up 50 minutes (healthy) 2379-2380/tcp
nexusai-docker-milvus-minio minio/minio:RELEASE.2023-03-20T20-16-18Z "/usr/bin/docker-ent…" minio 50 minutes ago Up 50 minutes (healthy) 9000/tcp
nexusai-docker-milvus-standalone milvusdb/milvus:v2.3.1 "/tini -- milvus run…" milvus-standalone 50 minutes ago Up 50 minutes (healthy) 0.0.0.0:9463->19530/tcp
nexusai-docker-multi-service edeai/multi_service:0.0.3 "supervisord -c /etc…" multi_service 50 minutes ago Up 50 minutes
nexusai-docker-nginx nginx:latest "/docker-entrypoint.…" nginx 50 minutes ago Up 40 minutes 0.0.0.0:9470->80/tcp
nexusai-docker-redis redis:6.2 "docker-entrypoint.s…" redis 50 minutes ago Up 50 minutes 0.0.0.0:9462->6379/tcp
nexusai-docker-sandbox edeai/sandbox:0.0.3 "python api_server.py" sandbox 50 minutes ago Up 50 minutes 0.0.0.0:9464->8001/tcp
nexusai-docker-web edeai/web:0.0.2 "docker-entrypoint.s…" web 50 minutes ago Up 50 minutes
After all containers are fully started, visit the following URL to enter the NexusAI homepage
http://127.0.0.1:9470
When you visit for the first time, you can log in using the following initial administrator account
Email:
[email protected]
Password:
nexusaipwd
Note that the initial administrator password is updated through the environment variable INIT_ADMIN_PASSWORD
in docker-compose.yml
Please execute the commands in the following order:
- Enter the Docker directory of the NexusAI source code
- Stop all containers
- Pull the updated content from the git repository, and make sure to synchronize the updated content in
docker-compose.yml.template
todocker-compose.yml
- Start all containers
cd NexusAI/docker
docker-compose down
git pull origin main
# Make sure to synchronize the updated content in `docker-compose.yml.template` to `docker-compose.yml`
docker-compose up -d
Edit the environment variables and service configuration in docker-compose.yml
and restart NexusAI
cd NexusAI/docker
docker-compose down
docker-compose up -d
Backend environment variables
# Database related configuration
MYSQL_HOST: mysql
MYSQL_PORT: 3306
MYSQL_USER: nexus_ai
MYSQL_PASSWORD: mysqlpwd
MYSQL_DB: nexus_ai
# Redis related configuration
REDIS_HOST: redis
REDIS_PORT: 6379
REDIS_DB: 0
REDIS_PASSWORD: redispwd
# websocket message queue key
WEBSOCKET_MESSAGE_QUEUE_KEY: websocket_message_queue
# Vector database related configuration
VDB_TYPE: Milvus
VDB_HOST: milvus-standalone
VDB_PORT: 19530
VDB_USER: root
VDB_PASSWORD: milvuspwd
# Vector database retriever configuration
# Vector database retriever class in langchain, number of retriever paragraphs returned, and retriever paragraph score threshold
RETRIEVER_TYPE: VectorStoreRetriever
RETRIEVER_K: 4
RETRIEVER_SCORE_THRESHOLD: 0
# The encryption key and expiration time of the access token
ACCESS_TOKEN_SECRET_KEY: nexus_ai
ACCESS_TOKEN_EXPIRE_MINUTES: 14400
# logging related configuration
LOG_ROTATE_INTERVAL: 6
LOG_BACKUP_COUNT: 20
# http related configuration
HTTP_CONNECT_TIMEOUT: 300
HTTP_READ_TIMEOUT: 600
HTTP_WRITE_TIMEOUT: 600
HTTP_RESPONSE_MAX_BINARY_SIZE: 10485760
HTTP_RESPONSE_MAX_TEXT_SIZE: 1048576
# Sandbox service connection configuration and workers number configuration
SANDBOX_HOST: 127.0.0.1
SANDBOX_PORT: 9464
SANDBOX_FASTAPI_WORKERS: 2
# Default configuration for LLM model
# Default supplier configuration ID (corresponding to the primary key of the supplier_configurations data table)
# Default LLM model configuration ID (corresponding to the primary key of the model_configurations data table)
DEFAULT_LLM_SUPPLIER_CONFIG_ID: 1
DEFAULT_LLM_CONFIG_ID: 3
# API, websocket and roundtable websocket service port configuration
API_PORT: 9472
WEBSOCKET_PORT: 9473
CHATROOM_WEBSOCKET_PORT: 9474
# Web access address
WEB_URL: http://127.0.0.1:9470
# Backend icon resource access address
ICON_URL: http://127.0.0.1:9470
# Agent/workflow API access timeout
APP_API_TIMEOUT: 60
# Number of api service workers
FASTAPI_WORKERS: 2
# Number of celery service workers
CELERY_WORKERS: 4
# Initial administrator password. After changing this configuration, restart NexusAI to take effect.
INIT_ADMIN_PASSWORD: nexusaiadmin
Front-end environment variables
# Backend API service access address
WEB_API_URL: http://127.0.0.1:9470
# Backend websocket service address (except roundtable service)
WEB_WS_URL: ws://127.0.0.1:9470/ws
# Backend roundtable service websocket service address
WEB_CHAT_URL: ws://127.0.0.1:9470/ws_chat
Before deploying NexusAI locally, we need to deploy the following basic services:
Clone the NexusAI source code to your local environment
If you want to enable Milvus authentication, refer to Milvus Authentication to set up Milvus authentication.
Initialize the model directory and storage directory
Cloning the Embedding and Reranker models for offline mode
Initialize the database
cd NexusAI
# Login to mariadb
mariadb -u root -p
# Create a database, user, and grant permissions
CREATE DATABASE nexus_ai DEFAULT CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci;
CREATE USER 'nexus_ai'@'%' IDENTIFIED BY '<mysqlpwd>';
GRANT ALL PRIVILEGES ON nexus_ai.* TO 'nexus_ai'@'%';
FLUSH PRIVILEGES;
EXIT;
# Data import
mariadb -u nexus_ai -p<mysqlpwd> nexus_ai < docker/mysql/db_init/nexus_ai.sql
Create and activate the basic conda environment. The default Python version we use is 3.10.13, We recommend using Python version >= 3.10 and <= 3.12 for compatibility.
cd NexusAI
conda create --name nexus_ai python=3.10.13 --no-default-packages
conda activate nexus_ai
conda env update -f conda/nexus_ai.yml
Copy .env
and modify the .env
configuration items as needed, For configuration instructions, refer to docker-compose.yml configuration instructions
cp .env.template .env
Configure icon access rules through nginx
server {
listen 9475; # The port should be consistent with ICON_URL in `.env`
location /tool_icon {
alias NexusAI/assets/tool; # Fill in the real path of the project
try_files $uri $uri/ =404;
}
}
Restart nginx
systemctl restart nginx
Start the sandbox container
# The docker image tag should be consistent with the configuration in `docker-compose.yml`
docker pull edeai/sandbox:<tag>
# SANDBOX_PORT should be consistent with `.env`
# The mounted local storage directory should be changed to the real path
# SANDBOX_FASTAPI_WORKERS: The number of workers for the sandbox service
docker run -d --privileged -p <SANDBOX_PORT>:8001 -v NexusAI/storage:/storage -e SANDBOX_FASTAPI_WORKERS=2 edeai/sandbox:<tag>
Note that before executing all the Python scripts below, you must first execute conda activate nexus_ai
Start the API service
python app.py
Start Celery asynchronous task service
python celery_app.py
Start the websocket service
python websocket.py
Start roundtable service
python task/chatroom_run.py
Start the workflow service
python task/workflow_run.py
Go to the web directory and copy envConfig.ts
, Modify the envConfig.ts
configuration items as needed. For configuration instructions, refer to docker-compose.yml configuration instructions
cd web
cp config/envConfig.ts.template config/envConfig.ts
Install dependency packages
npm install
Start the web service
# You can also use other instructions in `package.json:scripts`
npm run start
Visit NexusAI
http://127.0.0.1:9471
When you visit for the first time, you can log in using the following initial administrator account
Email:
[email protected]
Password:
nexusaipwd
Note: To update the initial administrator password
python scripts/init_admin_password.py
- Pull the updated content from the git repository
cd NexusAI
git pull origin main
- If
conda/nexus_ai.yml
is updated, the conda environment needs to be updated
conda activate nexus_ai
conda env update -f conda/nexus_ai.yml
- If there are
.sql
file updates in thedocker/multi_service/db_migrations directory
, you need to update the database
conda activate nexus_ai
python scripts/migrations.py
- If the image corresponding to
docker-compose.yml:sandbox:image
is updated, you need to restart the sandbox container
# Find the running sandbox container
docker ps | grep sandbox
# Stop the container by the corresponding container id
docker stop <container_id>
# Delete the container by the corresponding container id
docker rm <container_id>
# Delete old images
docker rmi edeai/sandbox:<old tag>
# The docker image tag should be consistent with the configuration in `docker-compose.yml`
docker pull edeai/sandbox:<new tag>
# SANDBOX_PORT should be consistent with `.env`
# The mounted local storage directory should be changed to the real path
# SANDBOX_FASTAPI_WORKERS: The number of workers for the sandbox service
docker run -d --privileged -p <SANDBOX_PORT>:8001 -v NexusAI/storage:/storage -e SANDBOX_FASTAPI_WORKERS=2 edeai/sandbox:<new tag>
-
Note that the updated content in
.env.template
is synchronized to.env
, and the updated content inweb/config/envConfig.ts.template
is synchronized toweb/config/envConfig.ts
-
Restart each service in turn
API
Celery
websocket
roundtable
workflow
web