Source code for the paper "UAC-AD: Unsupervised Adversarial Contrastive Learning for Anomaly Detection on Multi-source Data"
We support python3.x $ pip install -r requirements.txt
The result records are in the result21
directory.
cd codes && python run.py
Raw data for Dataset A: https://doi.org/10.5281/zenodo.7609780. The metric types for Dataset A include CPU status, memory status, IO status, and network status. The log type for Dataset A is Spark runtime logs.
Raw data for Dataset B: https://github.com/CloudWise-OpenSource/GAIA-DataSet/tree/main/MicroSS. The Dataset B is mainly comes from a scenario in the business simulation system, MicroSS, owned by Cloudwise. It comes from a scenario of logging-in with QR Code.
The data type for Dataset C is restricted due to confidentiality requirements and is not disclosed at this time.
.
├── README.md
├── codes
│ ├── common
│ │ ├── __init__.py
│ │ ├── data_loads.py
│ │ ├── data_processing.py
│ │ ├── data_processing_utils.py
│ │ ├── semantics.py
│ │ └── utils.py
│ ├── data_analysis.py
│ ├── gpu0.sh
│ ├── gpu1.sh
│ ├── models
│ │ ├── basev3.py
│ │ ├── fuse_v3.py
│ │ ├── kpi_model_v3.py
│ │ ├── log_model_v3.py
│ │ └── utils.py
│ └── run.py
├── data
│ └── chunk_10
│ ├── test.pkl
│ ├── train.pkl
│ ├── unlabel.pkl
│ └── unsupervised.pkl
├── requirements.txt
└── result21
├── main_result.png
├── overview.png
└── test.txt