Skip to content

PSEnet tf2.0 reimplementation for better training and inference and ResneSt/Mobilenet/ tensorflow2 implement/ Top 6 model in MTWI 2018 Text Detection

License

Notifications You must be signed in to change notification settings

li10141110/PSENet-tf2

Repository files navigation

Shape Robust Text Detection with Progressive Scale Expansion Network

Requirements

  • Python3
  • pyclipper
  • Polygon2
  • OpenCV
  • TensorFlow 2.0+

Introduction

(PSENet-tf2.0)Progressive Scale Expansion Network (PSENet) is a text detector which is able to well detect the arbitrary-shape text in natural scene. Besides, based on this text segmentation model, we got top 6 in MTWI 2018 Text Detection Challenge

Training (polygon)

CUDA_VISIBLE_DEVICES=0 python train_ic15.py

Testing (polygon)

CUDA_VISIBLE_DEVICES=0 python test_ic15.py --scale 1 --resume [path of model]

Training (quadrilateral)

CUDA_VISIBLE_DEVICES=0 python train_id41k.py

Testing (quadrilateral)

CUDA_VISIBLE_DEVICES=0 python test_id41k.py --scale 1 --resume [path of model]

Eval script for ICDAR 2015 and SCUT-CTW1500

cd eval
sh eval_ic15.sh
sh eval_ctw1500.sh

Performance (new version paper)

Method Extra Data Precision (%) Recall (%) F-measure (%) FPS (1080Ti) Model
PSENet-1s (ResNet50) - 81.49 79.68 80.57 1.6 baiduyun(extract code: rxti); OneDrive
PSENet-1s (ResNet50) pretrain on IC17 MLT 86.92 84.5 85.69 1.6 baiduyun(extract code: aieo); OneDrive
PSENet-4s (ResNet50) pretrain on IC17 MLT 86.1 83.77 84.92 3.8 baiduyun(extract code: aieo); OneDrive
Method Extra Data Precision (%) Recall (%) F-measure (%) FPS (1080Ti) Model
PSENet-1s (ResNet50) - 80.57 75.55 78.0 3.9 baiduyun(extract code: ksv7); OneDrive
PSENet-1s (ResNet50) pretrain on IC17 MLT 84.84 79.73 82.2 3.9 baiduyun(extract code: z7ac); OneDrive
PSENet-4s (ResNet50) pretrain on IC17 MLT 82.09 77.84 79.9 8.4 baiduyun(extract code: z7ac); OneDrive

Performance (old version paper)

ICDAR 2015 (training with ICDAR 2017 MLT)

Method Precision (%) Recall (%) F-measure (%)
PSENet-4s (ResNet152) 87.98 83.87 85.88
PSENet-2s (ResNet152) 89.30 85.22 87.21
PSENet-1s (ResNet152) 88.71 85.51 87.08
Method Precision (%) Recall (%) F-measure (%)
PSENet-4s (ResNet152) 75.98 67.56 71.52
PSENet-2s (ResNet152) 76.97 68.35 72.40
PSENet-1s (ResNet152) 77.01 68.40 72.45
Method Precision (%) Recall (%) F-measure (%)
PSENet-4s (ResNet152) 80.49 78.13 79.29
PSENet-2s (ResNet152) 81.95 79.30 80.60
PSENet-1s (ResNet152) 82.50 79.89 81.17
Method Precision (%) Recall (%) F-measure (%)
PSENet-1s (ResNet152) 8.28 70.0 76

Results

Figure 3: The results on ICDAR 2015, ICDAR 2017 MLT and SCUT-CTW1500

Paper Link

[new version paper] https://arxiv.org/abs/1903.12473

[old version paper] https://arxiv.org/abs/1806.02559

Other Implements

[pytorch version (thanks @WenmuZhou)] (https://github.com/WenmuZhou/PSENet.pytorch)

[tensorflow1.x version (thanks @liuheng92)] https://github.com/liuheng92/tensorflow_PSENet

Thanks and collaborator

laizhihui @ lzh

Citation

@inproceedings{wang2019shape,
  title={Shape Robust Text Detection With Progressive Scale Expansion Network},
  author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={9336--9345},
  year={2019}
}

About

PSEnet tf2.0 reimplementation for better training and inference and ResneSt/Mobilenet/ tensorflow2 implement/ Top 6 model in MTWI 2018 Text Detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

Packages

No packages published