forked from kiwibrowser/src.next
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Chromium] Importing third_party/blink/renderer/platform/graphics/dar…
…k_mode_image_classifier.cc from version 93.0.4577.25
- Loading branch information
Repository manager
committed
Aug 6, 2021
1 parent
523cbd1
commit 7c020be
Showing
1 changed file
with
274 additions
and
0 deletions.
There are no files selected for viewing
274 changes: 274 additions & 0 deletions
274
third_party/blink/renderer/platform/graphics/dark_mode_image_classifier.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,274 @@ | ||
// Copyright 2019 The Chromium Authors. All rights reserved. | ||
// Use of this source code is governed by a BSD-style license that can be | ||
// found in the LICENSE file. | ||
|
||
#include "third_party/blink/renderer/platform/graphics/dark_mode_image_classifier.h" | ||
|
||
#include <set> | ||
|
||
#include "base/memory/singleton.h" | ||
#include "third_party/abseil-cpp/absl/types/optional.h" | ||
#include "third_party/blink/renderer/platform/geometry/int_size.h" | ||
#include "third_party/blink/renderer/platform/graphics/darkmode/darkmode_classifier.h" | ||
|
||
namespace blink { | ||
namespace { | ||
|
||
// Decision tree lower and upper thresholds for grayscale and color images. | ||
const float kLowColorCountThreshold[2] = {0.8125, 0.015137}; | ||
const float kHighColorCountThreshold[2] = {1, 0.025635}; | ||
|
||
bool IsColorGray(const SkColor& color) { | ||
return abs(static_cast<int>(SkColorGetR(color)) - | ||
static_cast<int>(SkColorGetG(color))) + | ||
abs(static_cast<int>(SkColorGetG(color)) - | ||
static_cast<int>(SkColorGetB(color))) <= | ||
8; | ||
} | ||
|
||
bool IsColorTransparent(const SkColor& color) { | ||
return (SkColorGetA(color) < 128); | ||
} | ||
|
||
const int kMaxSampledPixels = 1000; | ||
const int kMaxBlocks = 10; | ||
const float kMinOpaquePixelPercentageForForeground = 0.2; | ||
|
||
} // namespace | ||
|
||
DarkModeImageClassifier::DarkModeImageClassifier() = default; | ||
|
||
DarkModeImageClassifier::~DarkModeImageClassifier() = default; | ||
|
||
DarkModeResult DarkModeImageClassifier::Classify(const SkPixmap& pixmap, | ||
const SkIRect& src) const { | ||
// Empty pixmap or |src| out of bounds cannot be classified. | ||
SkIRect bounds = pixmap.bounds(); | ||
if (src.isEmpty() || bounds.isEmpty() || !bounds.contains(src) || | ||
!pixmap.addr()) | ||
return DarkModeResult::kDoNotApplyFilter; | ||
|
||
auto features_or_null = GetFeatures(pixmap, src); | ||
if (!features_or_null) | ||
return DarkModeResult::kDoNotApplyFilter; | ||
|
||
return ClassifyWithFeatures(features_or_null.value()); | ||
} | ||
|
||
absl::optional<DarkModeImageClassifier::Features> | ||
DarkModeImageClassifier::GetFeatures(const SkPixmap& pixmap, | ||
const SkIRect& src) const { | ||
DCHECK(!pixmap.bounds().isEmpty()); | ||
float transparency_ratio; | ||
float background_ratio; | ||
std::vector<SkColor> sampled_pixels; | ||
GetSamples(pixmap, src, &sampled_pixels, &transparency_ratio, | ||
&background_ratio); | ||
// TODO(https://crbug.com/945434): Investigate why an incorrect resource is | ||
// loaded and how we can fetch the correct resource. This condition will | ||
// prevent going further with the rest of the classification logic. | ||
if (sampled_pixels.size() == 0) | ||
return absl::nullopt; | ||
|
||
return ComputeFeatures(sampled_pixels, transparency_ratio, background_ratio); | ||
} | ||
|
||
// Extracts sample pixels from the image. The image is separated into uniformly | ||
// distributed blocks through its width and height, each block is sampled, and | ||
// checked to see if it seems to be background or foreground. | ||
void DarkModeImageClassifier::GetSamples(const SkPixmap& pixmap, | ||
const SkIRect& src, | ||
std::vector<SkColor>* sampled_pixels, | ||
float* transparency_ratio, | ||
float* background_ratio) const { | ||
DCHECK(!src.isEmpty()); | ||
|
||
int num_sampled_pixels = | ||
std::min(kMaxSampledPixels, src.width() * src.height()); | ||
int num_blocks_x = std::min(kMaxBlocks, src.width()); | ||
int num_blocks_y = std::min(kMaxBlocks, src.height()); | ||
int pixels_per_block = num_sampled_pixels / (num_blocks_x * num_blocks_y); | ||
int transparent_pixels = 0; | ||
int opaque_pixels = 0; | ||
int blocks_count = 0; | ||
|
||
std::vector<int> horizontal_grid(num_blocks_x + 1); | ||
std::vector<int> vertical_grid(num_blocks_y + 1); | ||
|
||
float block_width = static_cast<float>(src.width()) / num_blocks_x; | ||
float block_height = static_cast<float>(src.height()) / num_blocks_y; | ||
|
||
for (int block = 0; block <= num_blocks_x; block++) { | ||
horizontal_grid[block] = | ||
src.x() + static_cast<int>(round(block_width * block)); | ||
} | ||
for (int block = 0; block <= num_blocks_y; block++) { | ||
vertical_grid[block] = | ||
src.y() + static_cast<int>(round(block_height * block)); | ||
} | ||
|
||
sampled_pixels->clear(); | ||
std::vector<SkIRect> foreground_blocks; | ||
|
||
for (int y = 0; y < num_blocks_y; y++) { | ||
for (int x = 0; x < num_blocks_x; x++) { | ||
SkIRect block = | ||
SkIRect::MakeXYWH(horizontal_grid[x], vertical_grid[y], | ||
horizontal_grid[x + 1] - horizontal_grid[x], | ||
vertical_grid[y + 1] - vertical_grid[y]); | ||
|
||
std::vector<SkColor> block_samples; | ||
int block_transparent_pixels; | ||
GetBlockSamples(pixmap, block, pixels_per_block, &block_samples, | ||
&block_transparent_pixels); | ||
opaque_pixels += static_cast<int>(block_samples.size()); | ||
transparent_pixels += block_transparent_pixels; | ||
sampled_pixels->insert(sampled_pixels->end(), block_samples.begin(), | ||
block_samples.end()); | ||
if (opaque_pixels > | ||
kMinOpaquePixelPercentageForForeground * pixels_per_block) { | ||
foreground_blocks.push_back(block); | ||
} | ||
blocks_count++; | ||
} | ||
} | ||
|
||
*transparency_ratio = static_cast<float>(transparent_pixels) / | ||
(transparent_pixels + opaque_pixels); | ||
*background_ratio = | ||
1.0 - static_cast<float>(foreground_blocks.size()) / blocks_count; | ||
} | ||
|
||
// Selects samples at regular intervals from a block of the image. | ||
// Returns the opaque sampled pixels, and the number of transparent | ||
// sampled pixels. | ||
void DarkModeImageClassifier::GetBlockSamples( | ||
const SkPixmap& pixmap, | ||
const SkIRect& block, | ||
const int required_samples_count, | ||
std::vector<SkColor>* sampled_pixels, | ||
int* transparent_pixels_count) const { | ||
*transparent_pixels_count = 0; | ||
|
||
DCHECK(pixmap.bounds().contains(block)); | ||
|
||
sampled_pixels->clear(); | ||
|
||
int cx = static_cast<int>( | ||
ceil(static_cast<float>(block.width()) / sqrt(required_samples_count))); | ||
int cy = static_cast<int>( | ||
ceil(static_cast<float>(block.height()) / sqrt(required_samples_count))); | ||
|
||
for (int y = block.y(); y < block.bottom(); y += cy) { | ||
for (int x = block.x(); x < block.right(); x += cx) { | ||
SkColor new_sample = pixmap.getColor(x, y); | ||
if (IsColorTransparent(new_sample)) | ||
(*transparent_pixels_count)++; | ||
else | ||
sampled_pixels->push_back(new_sample); | ||
} | ||
} | ||
} | ||
|
||
DarkModeImageClassifier::Features DarkModeImageClassifier::ComputeFeatures( | ||
const std::vector<SkColor>& sampled_pixels, | ||
const float transparency_ratio, | ||
const float background_ratio) const { | ||
int samples_count = static_cast<int>(sampled_pixels.size()); | ||
|
||
// Is image grayscale. | ||
int color_pixels = 0; | ||
for (const SkColor& sample : sampled_pixels) { | ||
if (!IsColorGray(sample)) | ||
color_pixels++; | ||
} | ||
ColorMode color_mode = (color_pixels > samples_count / 100) | ||
? ColorMode::kColor | ||
: ColorMode::kGrayscale; | ||
|
||
DarkModeImageClassifier::Features features; | ||
features.is_colorful = color_mode == ColorMode::kColor; | ||
features.color_buckets_ratio = | ||
ComputeColorBucketsRatio(sampled_pixels, color_mode); | ||
features.transparency_ratio = transparency_ratio; | ||
features.background_ratio = background_ratio; | ||
|
||
return features; | ||
} | ||
|
||
float DarkModeImageClassifier::ComputeColorBucketsRatio( | ||
const std::vector<SkColor>& sampled_pixels, | ||
const ColorMode color_mode) const { | ||
std::set<uint16_t> buckets; | ||
|
||
// If image is in color, use 4 bits per color channel, otherwise 4 bits for | ||
// illumination. | ||
if (color_mode == ColorMode::kColor) { | ||
for (const SkColor& sample : sampled_pixels) { | ||
uint16_t bucket = ((SkColorGetR(sample) >> 4) << 8) + | ||
((SkColorGetG(sample) >> 4) << 4) + | ||
((SkColorGetB(sample) >> 4)); | ||
buckets.insert(bucket); | ||
} | ||
} else { | ||
for (const SkColor& sample : sampled_pixels) { | ||
uint16_t illumination = | ||
(SkColorGetR(sample) * 5 + SkColorGetG(sample) * 3 + | ||
SkColorGetB(sample) * 2) / | ||
10; | ||
buckets.insert(illumination / 16); | ||
} | ||
} | ||
|
||
// Using 4 bit per channel representation of each color bucket, there would be | ||
// 2^4 buckets for grayscale images and 2^12 for color images. | ||
const float max_buckets[] = {16, 4096}; | ||
return static_cast<float>(buckets.size()) / | ||
max_buckets[color_mode == ColorMode::kColor]; | ||
} | ||
|
||
DarkModeResult DarkModeImageClassifier::ClassifyWithFeatures( | ||
const Features& features) const { | ||
DarkModeResult result = ClassifyUsingDecisionTree(features); | ||
|
||
// If decision tree cannot decide, we use a neural network to decide whether | ||
// to filter or not based on all the features. | ||
if (result == DarkModeResult::kNotClassified) { | ||
darkmode_tfnative_model::FixedAllocations nn_temp; | ||
float nn_out; | ||
|
||
// The neural network expects these features to be in a specific order | ||
// within float array. Do not change the order here without also changing | ||
// the neural network code! | ||
float feature_list[]{ | ||
features.is_colorful ? 1.0f : 0.0f, features.color_buckets_ratio, | ||
features.transparency_ratio, features.background_ratio}; | ||
|
||
darkmode_tfnative_model::Inference(feature_list, &nn_out, &nn_temp); | ||
result = nn_out > 0 ? DarkModeResult::kApplyFilter | ||
: DarkModeResult::kDoNotApplyFilter; | ||
} | ||
|
||
return result; | ||
} | ||
|
||
DarkModeResult DarkModeImageClassifier::ClassifyUsingDecisionTree( | ||
const DarkModeImageClassifier::Features& features) const { | ||
float low_color_count_threshold = | ||
kLowColorCountThreshold[features.is_colorful]; | ||
float high_color_count_threshold = | ||
kHighColorCountThreshold[features.is_colorful]; | ||
|
||
// Very few colors means it's not a photo, apply the filter. | ||
if (features.color_buckets_ratio < low_color_count_threshold) | ||
return DarkModeResult::kApplyFilter; | ||
|
||
// Too many colors means it's probably photorealistic, do not apply it. | ||
if (features.color_buckets_ratio > high_color_count_threshold) | ||
return DarkModeResult::kDoNotApplyFilter; | ||
|
||
// In-between, decision tree cannot give a precise result. | ||
return DarkModeResult::kNotClassified; | ||
} | ||
|
||
} // namespace blink |