Skip to content

Commit

Permalink
[Chromium] Importing third_party/blink/renderer/platform/graphics/dar…
Browse files Browse the repository at this point in the history
…k_mode_image_classifier.cc from version 93.0.4577.25
  • Loading branch information
Repository manager committed Aug 6, 2021
1 parent 523cbd1 commit 7c020be
Showing 1 changed file with 274 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,274 @@
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "third_party/blink/renderer/platform/graphics/dark_mode_image_classifier.h"

#include <set>

#include "base/memory/singleton.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
#include "third_party/blink/renderer/platform/geometry/int_size.h"
#include "third_party/blink/renderer/platform/graphics/darkmode/darkmode_classifier.h"

namespace blink {
namespace {

// Decision tree lower and upper thresholds for grayscale and color images.
const float kLowColorCountThreshold[2] = {0.8125, 0.015137};
const float kHighColorCountThreshold[2] = {1, 0.025635};

bool IsColorGray(const SkColor& color) {
return abs(static_cast<int>(SkColorGetR(color)) -
static_cast<int>(SkColorGetG(color))) +
abs(static_cast<int>(SkColorGetG(color)) -
static_cast<int>(SkColorGetB(color))) <=
8;
}

bool IsColorTransparent(const SkColor& color) {
return (SkColorGetA(color) < 128);
}

const int kMaxSampledPixels = 1000;
const int kMaxBlocks = 10;
const float kMinOpaquePixelPercentageForForeground = 0.2;

} // namespace

DarkModeImageClassifier::DarkModeImageClassifier() = default;

DarkModeImageClassifier::~DarkModeImageClassifier() = default;

DarkModeResult DarkModeImageClassifier::Classify(const SkPixmap& pixmap,
const SkIRect& src) const {
// Empty pixmap or |src| out of bounds cannot be classified.
SkIRect bounds = pixmap.bounds();
if (src.isEmpty() || bounds.isEmpty() || !bounds.contains(src) ||
!pixmap.addr())
return DarkModeResult::kDoNotApplyFilter;

auto features_or_null = GetFeatures(pixmap, src);
if (!features_or_null)
return DarkModeResult::kDoNotApplyFilter;

return ClassifyWithFeatures(features_or_null.value());
}

absl::optional<DarkModeImageClassifier::Features>
DarkModeImageClassifier::GetFeatures(const SkPixmap& pixmap,
const SkIRect& src) const {
DCHECK(!pixmap.bounds().isEmpty());
float transparency_ratio;
float background_ratio;
std::vector<SkColor> sampled_pixels;
GetSamples(pixmap, src, &sampled_pixels, &transparency_ratio,
&background_ratio);
// TODO(https://crbug.com/945434): Investigate why an incorrect resource is
// loaded and how we can fetch the correct resource. This condition will
// prevent going further with the rest of the classification logic.
if (sampled_pixels.size() == 0)
return absl::nullopt;

return ComputeFeatures(sampled_pixels, transparency_ratio, background_ratio);
}

// Extracts sample pixels from the image. The image is separated into uniformly
// distributed blocks through its width and height, each block is sampled, and
// checked to see if it seems to be background or foreground.
void DarkModeImageClassifier::GetSamples(const SkPixmap& pixmap,
const SkIRect& src,
std::vector<SkColor>* sampled_pixels,
float* transparency_ratio,
float* background_ratio) const {
DCHECK(!src.isEmpty());

int num_sampled_pixels =
std::min(kMaxSampledPixels, src.width() * src.height());
int num_blocks_x = std::min(kMaxBlocks, src.width());
int num_blocks_y = std::min(kMaxBlocks, src.height());
int pixels_per_block = num_sampled_pixels / (num_blocks_x * num_blocks_y);
int transparent_pixels = 0;
int opaque_pixels = 0;
int blocks_count = 0;

std::vector<int> horizontal_grid(num_blocks_x + 1);
std::vector<int> vertical_grid(num_blocks_y + 1);

float block_width = static_cast<float>(src.width()) / num_blocks_x;
float block_height = static_cast<float>(src.height()) / num_blocks_y;

for (int block = 0; block <= num_blocks_x; block++) {
horizontal_grid[block] =
src.x() + static_cast<int>(round(block_width * block));
}
for (int block = 0; block <= num_blocks_y; block++) {
vertical_grid[block] =
src.y() + static_cast<int>(round(block_height * block));
}

sampled_pixels->clear();
std::vector<SkIRect> foreground_blocks;

for (int y = 0; y < num_blocks_y; y++) {
for (int x = 0; x < num_blocks_x; x++) {
SkIRect block =
SkIRect::MakeXYWH(horizontal_grid[x], vertical_grid[y],
horizontal_grid[x + 1] - horizontal_grid[x],
vertical_grid[y + 1] - vertical_grid[y]);

std::vector<SkColor> block_samples;
int block_transparent_pixels;
GetBlockSamples(pixmap, block, pixels_per_block, &block_samples,
&block_transparent_pixels);
opaque_pixels += static_cast<int>(block_samples.size());
transparent_pixels += block_transparent_pixels;
sampled_pixels->insert(sampled_pixels->end(), block_samples.begin(),
block_samples.end());
if (opaque_pixels >
kMinOpaquePixelPercentageForForeground * pixels_per_block) {
foreground_blocks.push_back(block);
}
blocks_count++;
}
}

*transparency_ratio = static_cast<float>(transparent_pixels) /
(transparent_pixels + opaque_pixels);
*background_ratio =
1.0 - static_cast<float>(foreground_blocks.size()) / blocks_count;
}

// Selects samples at regular intervals from a block of the image.
// Returns the opaque sampled pixels, and the number of transparent
// sampled pixels.
void DarkModeImageClassifier::GetBlockSamples(
const SkPixmap& pixmap,
const SkIRect& block,
const int required_samples_count,
std::vector<SkColor>* sampled_pixels,
int* transparent_pixels_count) const {
*transparent_pixels_count = 0;

DCHECK(pixmap.bounds().contains(block));

sampled_pixels->clear();

int cx = static_cast<int>(
ceil(static_cast<float>(block.width()) / sqrt(required_samples_count)));
int cy = static_cast<int>(
ceil(static_cast<float>(block.height()) / sqrt(required_samples_count)));

for (int y = block.y(); y < block.bottom(); y += cy) {
for (int x = block.x(); x < block.right(); x += cx) {
SkColor new_sample = pixmap.getColor(x, y);
if (IsColorTransparent(new_sample))
(*transparent_pixels_count)++;
else
sampled_pixels->push_back(new_sample);
}
}
}

DarkModeImageClassifier::Features DarkModeImageClassifier::ComputeFeatures(
const std::vector<SkColor>& sampled_pixels,
const float transparency_ratio,
const float background_ratio) const {
int samples_count = static_cast<int>(sampled_pixels.size());

// Is image grayscale.
int color_pixels = 0;
for (const SkColor& sample : sampled_pixels) {
if (!IsColorGray(sample))
color_pixels++;
}
ColorMode color_mode = (color_pixels > samples_count / 100)
? ColorMode::kColor
: ColorMode::kGrayscale;

DarkModeImageClassifier::Features features;
features.is_colorful = color_mode == ColorMode::kColor;
features.color_buckets_ratio =
ComputeColorBucketsRatio(sampled_pixels, color_mode);
features.transparency_ratio = transparency_ratio;
features.background_ratio = background_ratio;

return features;
}

float DarkModeImageClassifier::ComputeColorBucketsRatio(
const std::vector<SkColor>& sampled_pixels,
const ColorMode color_mode) const {
std::set<uint16_t> buckets;

// If image is in color, use 4 bits per color channel, otherwise 4 bits for
// illumination.
if (color_mode == ColorMode::kColor) {
for (const SkColor& sample : sampled_pixels) {
uint16_t bucket = ((SkColorGetR(sample) >> 4) << 8) +
((SkColorGetG(sample) >> 4) << 4) +
((SkColorGetB(sample) >> 4));
buckets.insert(bucket);
}
} else {
for (const SkColor& sample : sampled_pixels) {
uint16_t illumination =
(SkColorGetR(sample) * 5 + SkColorGetG(sample) * 3 +
SkColorGetB(sample) * 2) /
10;
buckets.insert(illumination / 16);
}
}

// Using 4 bit per channel representation of each color bucket, there would be
// 2^4 buckets for grayscale images and 2^12 for color images.
const float max_buckets[] = {16, 4096};
return static_cast<float>(buckets.size()) /
max_buckets[color_mode == ColorMode::kColor];
}

DarkModeResult DarkModeImageClassifier::ClassifyWithFeatures(
const Features& features) const {
DarkModeResult result = ClassifyUsingDecisionTree(features);

// If decision tree cannot decide, we use a neural network to decide whether
// to filter or not based on all the features.
if (result == DarkModeResult::kNotClassified) {
darkmode_tfnative_model::FixedAllocations nn_temp;
float nn_out;

// The neural network expects these features to be in a specific order
// within float array. Do not change the order here without also changing
// the neural network code!
float feature_list[]{
features.is_colorful ? 1.0f : 0.0f, features.color_buckets_ratio,
features.transparency_ratio, features.background_ratio};

darkmode_tfnative_model::Inference(feature_list, &nn_out, &nn_temp);
result = nn_out > 0 ? DarkModeResult::kApplyFilter
: DarkModeResult::kDoNotApplyFilter;
}

return result;
}

DarkModeResult DarkModeImageClassifier::ClassifyUsingDecisionTree(
const DarkModeImageClassifier::Features& features) const {
float low_color_count_threshold =
kLowColorCountThreshold[features.is_colorful];
float high_color_count_threshold =
kHighColorCountThreshold[features.is_colorful];

// Very few colors means it's not a photo, apply the filter.
if (features.color_buckets_ratio < low_color_count_threshold)
return DarkModeResult::kApplyFilter;

// Too many colors means it's probably photorealistic, do not apply it.
if (features.color_buckets_ratio > high_color_count_threshold)
return DarkModeResult::kDoNotApplyFilter;

// In-between, decision tree cannot give a precise result.
return DarkModeResult::kNotClassified;
}

} // namespace blink

0 comments on commit 7c020be

Please sign in to comment.