forked from NVIDIA/DeepLearningExamples
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
3f9cdc6
commit d646ec9
Showing
23 changed files
with
2,749 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
ARG FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:20.12-py3 | ||
FROM ${FROM_IMAGE_NAME} | ||
|
||
ADD . /workspace/nnunet_pyt | ||
WORKDIR /workspace/nnunet_pyt | ||
|
||
RUN pip install --upgrade pip | ||
RUN pip install --disable-pip-version-check -r requirements.txt | ||
RUN pip install pytorch-lightning==1.0.0 --no-dependencies | ||
RUN pip install monai==0.4.0 --no-dependencies | ||
RUN pip install --extra-index-url https://developer.download.nvidia.com/compute/redist/ nvidia-dali-cuda110==0.29.0 | ||
RUN pip install torch_optimizer==0.0.1a15 --no-dependencies | ||
RUN curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip" | ||
RUN unzip awscliv2.zip | ||
RUN ./aws/install | ||
RUN rm -rf awscliv2.zip aws |
Large diffs are not rendered by default.
Oops, something went wrong.
260 changes: 260 additions & 0 deletions
260
PyTorch/Segmentation/nnUNet/data_loading/dali_loader.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,260 @@ | ||
import itertools | ||
import os | ||
|
||
import numpy as np | ||
import nvidia.dali.fn as fn | ||
import nvidia.dali.math as math | ||
import nvidia.dali.ops as ops | ||
import nvidia.dali.tfrecord as tfrec | ||
import nvidia.dali.types as types | ||
from nvidia.dali.pipeline import Pipeline | ||
from nvidia.dali.plugin.pytorch import DALIGenericIterator | ||
|
||
|
||
class TFRecordTrain(Pipeline): | ||
def __init__(self, batch_size, num_threads, device_id, **kwargs): | ||
super(TFRecordTrain, self).__init__(batch_size, num_threads, device_id) | ||
self.dim = kwargs["dim"] | ||
self.seed = kwargs["seed"] | ||
self.oversampling = kwargs["oversampling"] | ||
self.input = ops.TFRecordReader( | ||
path=kwargs["tfrecords"], | ||
index_path=kwargs["tfrecords_idx"], | ||
features={ | ||
"X_shape": tfrec.FixedLenFeature([self.dim + 1], tfrec.int64, 0), | ||
"Y_shape": tfrec.FixedLenFeature([self.dim + 1], tfrec.int64, 0), | ||
"X": tfrec.VarLenFeature([], tfrec.float32, 0.0), | ||
"Y": tfrec.FixedLenFeature([], tfrec.string, ""), | ||
"fname": tfrec.FixedLenFeature([], tfrec.string, ""), | ||
}, | ||
num_shards=kwargs["gpus"], | ||
shard_id=device_id, | ||
random_shuffle=True, | ||
pad_last_batch=True, | ||
read_ahead=True, | ||
seed=self.seed, | ||
) | ||
self.patch_size = kwargs["patch_size"] | ||
self.crop_shape = types.Constant(np.array(self.patch_size), dtype=types.INT64) | ||
self.crop_shape_float = types.Constant(np.array(self.patch_size), dtype=types.FLOAT) | ||
self.layout = "CDHW" if self.dim == 3 else "CHW" | ||
self.axis_name = "DHW" if self.dim == 3 else "HW" | ||
|
||
def load_data(self, features): | ||
img = fn.reshape(features["X"], shape=features["X_shape"], layout=self.layout) | ||
lbl = fn.reshape(features["Y"], shape=features["Y_shape"], layout=self.layout) | ||
lbl = fn.reinterpret(lbl, dtype=types.DALIDataType.UINT8) | ||
return img, lbl | ||
|
||
def random_augmentation(self, probability, augmented, original): | ||
condition = fn.cast(fn.coin_flip(probability=probability), dtype=types.DALIDataType.BOOL) | ||
neg_condition = condition ^ True | ||
return condition * augmented + neg_condition * original | ||
|
||
@staticmethod | ||
def slice_fn(img, start_idx, length): | ||
return fn.slice(img, start_idx, length, axes=[0]) | ||
|
||
def crop_fn(self, img, lbl): | ||
center = fn.segmentation.random_mask_pixel(lbl, foreground=fn.coin_flip(probability=self.oversampling)) | ||
crop_anchor = self.slice_fn(center, 1, self.dim) - self.crop_shape // 2 | ||
adjusted_anchor = math.max(0, crop_anchor) | ||
max_anchor = self.slice_fn(fn.shapes(lbl), 1, self.dim) - self.crop_shape | ||
crop_anchor = math.min(adjusted_anchor, max_anchor) | ||
img = fn.slice(img.gpu(), crop_anchor, self.crop_shape, axis_names=self.axis_name, out_of_bounds_policy="pad") | ||
lbl = fn.slice(lbl.gpu(), crop_anchor, self.crop_shape, axis_names=self.axis_name, out_of_bounds_policy="pad") | ||
return img, lbl | ||
|
||
def zoom_fn(self, img, lbl): | ||
resized_shape = self.crop_shape * self.random_augmentation(0.15, fn.uniform(range=(0.7, 1.0)), 1.0) | ||
img, lbl = fn.crop(img, crop=resized_shape), fn.crop(lbl, crop=resized_shape) | ||
img = fn.resize(img, interp_type=types.DALIInterpType.INTERP_CUBIC, size=self.crop_shape_float) | ||
lbl = fn.resize(lbl, interp_type=types.DALIInterpType.INTERP_NN, size=self.crop_shape_float) | ||
return img, lbl | ||
|
||
def noise_fn(self, img): | ||
img_noised = img + fn.normal_distribution(img, stddev=fn.uniform(range=(0.0, 0.33))) | ||
return self.random_augmentation(0.15, img_noised, img) | ||
|
||
def blur_fn(self, img): | ||
img_blured = fn.gaussian_blur(img, sigma=fn.uniform(range=(0.5, 1.5))) | ||
return self.random_augmentation(0.15, img_blured, img) | ||
|
||
def brightness_fn(self, img): | ||
brightness_scale = self.random_augmentation(0.15, fn.uniform(range=(0.7, 1.3)), 1.0) | ||
return img * brightness_scale | ||
|
||
def contrast_fn(self, img): | ||
min_, max_ = fn.reductions.min(img), fn.reductions.max(img) | ||
scale = self.random_augmentation(0.15, fn.uniform(range=(0.65, 1.5)), 1.0) | ||
img = math.clamp(img * scale, min_, max_) | ||
return img | ||
|
||
def flips_fn(self, img, lbl): | ||
kwargs = {"horizontal": fn.coin_flip(probability=0.33), "vertical": fn.coin_flip(probability=0.33)} | ||
if self.dim == 3: | ||
kwargs.update({"depthwise": fn.coin_flip(probability=0.33)}) | ||
return fn.flip(img, **kwargs), fn.flip(lbl, **kwargs) | ||
|
||
def define_graph(self): | ||
features = self.input(name="Reader") | ||
img, lbl = self.load_data(features) | ||
img, lbl = self.crop_fn(img, lbl) | ||
img, lbl = self.zoom_fn(img, lbl) | ||
img = self.noise_fn(img) | ||
img = self.blur_fn(img) | ||
img = self.brightness_fn(img) | ||
img = self.contrast_fn(img) | ||
img, lbl = self.flips_fn(img, lbl) | ||
return img, lbl | ||
|
||
|
||
class TFRecordEval(Pipeline): | ||
def __init__(self, batch_size, num_threads, device_id, **kwargs): | ||
super(TFRecordEval, self).__init__(batch_size, num_threads, device_id) | ||
self.input = ops.TFRecordReader( | ||
path=kwargs["tfrecords"], | ||
index_path=kwargs["tfrecords_idx"], | ||
features={ | ||
"X_shape": tfrec.FixedLenFeature([4], tfrec.int64, 0), | ||
"Y_shape": tfrec.FixedLenFeature([4], tfrec.int64, 0), | ||
"X": tfrec.VarLenFeature([], tfrec.float32, 0.0), | ||
"Y": tfrec.FixedLenFeature([], tfrec.string, ""), | ||
"fname": tfrec.FixedLenFeature([], tfrec.string, ""), | ||
}, | ||
shard_id=device_id, | ||
num_shards=kwargs["gpus"], | ||
read_ahead=True, | ||
random_shuffle=False, | ||
pad_last_batch=True, | ||
) | ||
|
||
def load_data(self, features): | ||
img = fn.reshape(features["X"].gpu(), shape=features["X_shape"], layout="CDHW") | ||
lbl = fn.reshape(features["Y"].gpu(), shape=features["Y_shape"], layout="CDHW") | ||
lbl = fn.reinterpret(lbl, dtype=types.DALIDataType.UINT8) | ||
return img, lbl | ||
|
||
def define_graph(self): | ||
features = self.input(name="Reader") | ||
img, lbl = self.load_data(features) | ||
return img, lbl, features["fname"] | ||
|
||
|
||
class TFRecordTest(Pipeline): | ||
def __init__(self, batch_size, num_threads, device_id, **kwargs): | ||
super(TFRecordTest, self).__init__(batch_size, num_threads, device_id) | ||
self.input = ops.TFRecordReader( | ||
path=kwargs["tfrecords"], | ||
index_path=kwargs["tfrecords_idx"], | ||
features={ | ||
"X_shape": tfrec.FixedLenFeature([4], tfrec.int64, 0), | ||
"X": tfrec.VarLenFeature([], tfrec.float32, 0.0), | ||
"fname": tfrec.FixedLenFeature([], tfrec.string, ""), | ||
}, | ||
shard_id=device_id, | ||
num_shards=kwargs["gpus"], | ||
read_ahead=True, | ||
random_shuffle=False, | ||
pad_last_batch=True, | ||
) | ||
|
||
def define_graph(self): | ||
features = self.input(name="Reader") | ||
img = fn.reshape(features["X"].gpu(), shape=features["X_shape"], layout="CDHW") | ||
return img, features["fname"] | ||
|
||
|
||
class TFRecordBenchmark(Pipeline): | ||
def __init__(self, batch_size, num_threads, device_id, **kwargs): | ||
super(TFRecordBenchmark, self).__init__(batch_size, num_threads, device_id) | ||
self.dim = kwargs["dim"] | ||
self.input = ops.TFRecordReader( | ||
path=kwargs["tfrecords"], | ||
index_path=kwargs["tfrecords_idx"], | ||
features={ | ||
"X_shape": tfrec.FixedLenFeature([self.dim + 1], tfrec.int64, 0), | ||
"Y_shape": tfrec.FixedLenFeature([self.dim + 1], tfrec.int64, 0), | ||
"X": tfrec.VarLenFeature([], tfrec.float32, 0.0), | ||
"Y": tfrec.FixedLenFeature([], tfrec.string, ""), | ||
"fname": tfrec.FixedLenFeature([], tfrec.string, ""), | ||
}, | ||
shard_id=device_id, | ||
num_shards=kwargs["gpus"], | ||
read_ahead=True, | ||
) | ||
self.patch_size = kwargs["patch_size"] | ||
self.layout = "CDHW" if self.dim == 3 else "CHW" | ||
|
||
def load_data(self, features): | ||
img = fn.reshape(features["X"].gpu(), shape=features["X_shape"], layout=self.layout) | ||
lbl = fn.reshape(features["Y"].gpu(), shape=features["Y_shape"], layout=self.layout) | ||
lbl = fn.reinterpret(lbl, dtype=types.DALIDataType.UINT8) | ||
return img, lbl | ||
|
||
def crop_fn(self, img, lbl): | ||
img = fn.crop(img, crop=self.patch_size) | ||
lbl = fn.crop(lbl, crop=self.patch_size) | ||
return img, lbl | ||
|
||
def define_graph(self): | ||
features = self.input(name="Reader") | ||
img, lbl = self.load_data(features) | ||
img, lbl = self.crop_fn(img, lbl) | ||
return img, lbl | ||
|
||
|
||
class LightningWrapper(DALIGenericIterator): | ||
def __init__(self, pipe, **kwargs): | ||
super().__init__(pipe, **kwargs) | ||
|
||
def __next__(self): | ||
out = super().__next__() | ||
out = out[0] | ||
return out | ||
|
||
|
||
def fetch_dali_loader(tfrecords, idx_files, batch_size, mode, **kwargs): | ||
assert len(tfrecords) > 0, "Got empty tfrecord list" | ||
assert len(idx_files) == len(tfrecords), f"Got {len(idx_files)} index files but {len(tfrecords)} tfrecords" | ||
|
||
if kwargs["benchmark"]: | ||
tfrecords = list(itertools.chain(*(20 * [tfrecords]))) | ||
idx_files = list(itertools.chain(*(20 * [idx_files]))) | ||
|
||
pipe_kwargs = { | ||
"tfrecords": tfrecords, | ||
"tfrecords_idx": idx_files, | ||
"gpus": kwargs["gpus"], | ||
"seed": kwargs["seed"], | ||
"patch_size": kwargs["patch_size"], | ||
"dim": kwargs["dim"], | ||
"oversampling": kwargs["oversampling"], | ||
} | ||
|
||
if kwargs["benchmark"] and mode == "eval": | ||
pipeline = TFRecordBenchmark | ||
output_map = ["image", "label"] | ||
dynamic_shape = False | ||
elif mode == "training": | ||
pipeline = TFRecordTrain | ||
output_map = ["image", "label"] | ||
dynamic_shape = False | ||
elif mode == "eval": | ||
pipeline = TFRecordEval | ||
output_map = ["image", "label", "fname"] | ||
dynamic_shape = True | ||
else: | ||
pipeline = TFRecordTest | ||
output_map = ["image", "fname"] | ||
dynamic_shape = True | ||
|
||
device_id = int(os.getenv("LOCAL_RANK", "0")) | ||
pipe = pipeline(batch_size, kwargs["num_workers"], device_id, **pipe_kwargs) | ||
return LightningWrapper( | ||
pipe, | ||
auto_reset=True, | ||
reader_name="Reader", | ||
output_map=output_map, | ||
dynamic_shape=dynamic_shape, | ||
) |
Oops, something went wrong.