-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
64 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
#!/usr/bin/python | ||
|
||
import matplotlib.pyplot as plt | ||
import matplotlib.ticker as plticker | ||
import matplotlib as mpl | ||
import sys | ||
import os | ||
|
||
mpl.rcParams['ps.useafm'] = True | ||
mpl.rcParams['pdf.use14corefonts'] = True | ||
mpl.rcParams['text.usetex'] = True | ||
mpl.rcParams['text.latex.preamble'] = [ | ||
#r'\usepackage{siunitx}', # i need upright \micro symbols, but you need... | ||
#r'\sisetup{detect-all}', # ...this to force siunitx to actually use your fonts | ||
r'\usepackage{helvet}', # set the normal font here | ||
r'\usepackage{sansmath}', # load up the sansmath so that math -> helvet | ||
r'\sansmath' # <- tricky! -- # gotta actually # tell tex to use! | ||
] | ||
mpl.rcParams['xtick.labelsize'] = 20 | ||
mpl.rcParams['ytick.labelsize'] = 20 | ||
|
||
#input_path = "baseline_training_log" | ||
#input_path = "lstm_training.log" | ||
#input_path = "lstm_regression_training.log" | ||
input_path = sys.argv[1] | ||
result_dir = "../graphs/" | ||
total_num = 200 | ||
|
||
axis = [] | ||
train_loss = [] | ||
train_error = [] | ||
test_loss = [] | ||
test_error = [] | ||
|
||
with open(input_path) as input_file: | ||
for line in input_file: | ||
terms = line.replace(':', ' ').replace(',', ' ').split() | ||
print terms | ||
# depending on the output format of your training log, you may want to modify the term indices below | ||
if terms[1] == "training": | ||
axis.append(int(terms[0])) | ||
train_loss.append(float(terms[3])) | ||
train_error.append(float(terms[5])) | ||
test_loss.append(float(terms[8])) | ||
test_error.append(float(terms[10])) | ||
|
||
|
||
def plot(data1, data2, legend1, legend2, y_legend, result_prefix): | ||
fig = plt.figure() | ||
fig.set_size_inches(10, 2) | ||
ax = fig.add_subplot(111) | ||
plt.gca().set_xlim([0, total_num]) | ||
ax.grid() | ||
ax.set_ylabel(y_legend,fontsize=18,weight='bold') | ||
ax.set_xlabel(r"\textbf{Training Epoch}",fontsize=18,weight='bold') | ||
ax.plot(axis, data1, 'r-', label = legend1, linewidth = 2.0) | ||
ax.plot(axis, data2, 'b-', | ||
label = legend2, linewidth = 2.0) | ||
ax.legend(ncol=2, bbox_to_anchor=(1.01, 1.2)) | ||
plt.savefig(result_dir + "%s_%s.pdf" % (result_prefix, input_path), bbox_inches='tight') | ||
|
||
plot(train_loss, test_loss, r"\textbf{Training Loss}", r"\textbf{Development Loss}", r"\textbf{L1-loss}", "loss") | ||
plot(train_error, test_error, r"\textbf{Training Error}", r"\textbf{Development Error}", | ||
r"\textbf{Prediction Error}", "error") |