Skip to content

Integrate cutting-edge LLM technology quickly and easily into your apps

License

Notifications You must be signed in to change notification settings

linwenda/semantic-kernel

 
 

Repository files navigation

Semantic Kernel

Status

  • Python
    Python package
  • .NET
    Nuget packagedotnet Dockerdotnet Windows
  • Java
    Java CICD BuildsMaven Central

Overview

License: MIT Discord

Semantic Kernel is an SDK that integrates Large Language Models (LLMs) like OpenAI, Azure OpenAI, and Hugging Face with conventional programming languages like C#, Python, and Java. Semantic Kernel achieves this by allowing you to define plugins that can be chained together in just a few lines of code.

What makes Semantic Kernel special, however, is its ability to automatically orchestrate plugins with AI. With Semantic Kernel planners, you can ask an LLM to generate a plan that achieves a user's unique goal. Afterwards, Semantic Kernel will execute the plan for the user.

Please star the repo to show your support for this project!

Orchestrating plugins with planner

Getting started with Semantic Kernel

The Semantic Kernel SDK is available in C#, Python, and Java. To get started, choose your preferred language below. See the Feature Matrix to see a breakdown of feature parity between our currently supported languages.

Java logo

The quickest way to get started with the basics is to get an API key from either OpenAI or Azure OpenAI and to run one of the C#, Python, and Java console applications/scripts below.

For C#:

  1. Create a new console app.
  2. Add the semantic kernel nuget Microsoft.SemanticKernel.
  3. Copy the code from here into the app Program.cs file.
  4. Replace the configuration placeholders for API key and other params with your key and settings.
  5. Run with F5 or dotnet run

For Python:

  1. Install the pip package: python -m pip install semantic-kernel.
  2. Create a new script e.g. hello-world.py.
  3. Store your API key and settings in an .env file as described here.
  4. Copy the code from here into the hello-world.py script.
  5. Run the python script.

For Java:

  1. Clone the repository: git clone https://github.com/microsoft/semantic-kernel.git
    1. To access the latest Java code, clone and checkout the Java development branch: git clone -b java-development https://github.com/microsoft/semantic-kernel.git
  2. Follow the instructions here

Learning how to use Semantic Kernel

The fastest way to learn how to use Semantic Kernel is with our C# and Python Jupyter notebooks. These notebooks demonstrate how to use Semantic Kernel with code snippets that you can run with a push of a button.

Once you've finished the getting started notebooks, you can then check out the main walkthroughs on our Learn site. Each sample comes with a completed C# and Python project that you can run locally.

  1. 📖 Overview of the kernel
  2. 🔌 Understanding AI plugins
  3. 👄 Creating semantic functions
  4. 💽 Creating native functions
  5. ⛓️ Chaining functions together
  6. 🤖 Auto create plans with planner
  7. 💡 Create and run a ChatGPT plugin

Finally, refer to our API references for more details on the C# and Python APIs:

  • C# API reference
  • Python API reference (coming soon)
  • Java API reference (coming soon)

Join the community

We welcome your contributions and suggestions to SK community! One of the easiest ways to participate is to engage in discussions in the GitHub repository. Bug reports and fixes are welcome!

For new features, components, or extensions, please open an issue and discuss with us before sending a PR. This is to avoid rejection as we might be taking the core in a different direction, but also to consider the impact on the larger ecosystem.

To learn more and get started:

Contributor Wall of Fame

semantic-kernel contributors

Code of Conduct

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

License

Copyright (c) Microsoft Corporation. All rights reserved.

Licensed under the MIT license.

About

Integrate cutting-edge LLM technology quickly and easily into your apps

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C# 65.4%
  • Python 20.2%
  • Java 11.4%
  • Jupyter Notebook 2.9%
  • Handlebars 0.1%
  • Shell 0.0%