Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Spark-5406][MLlib] LocalLAPACK mode in RowMatrix.computeSVD should h…
…ave much smaller upper bound JIRA link: https://issues.apache.org/jira/browse/SPARK-5406 The code in breeze svd imposes the upper bound for LocalLAPACK in RowMatrix.computeSVD code from breeze svd (https://github.com/scalanlp/breeze/blob/master/math/src/main/scala/breeze/linalg/functions/svd.scala) val workSize = ( 3 * scala.math.min(m, n) * scala.math.min(m, n) + scala.math.max(scala.math.max(m, n), 4 * scala.math.min(m, n) * scala.math.min(m, n) + 4 * scala.math.min(m, n)) ) val work = new Array[Double](workSize) As a result, 7 * n * n + 4 * n < Int.MaxValue at least (depends on JVM) In some worse cases, like n = 25000, work size will become positive again (80032704) and bring wired behavior. The PR is only the beginning, to support Genbase ( an important biological benchmark that would help promote Spark to genetic applications, http://www.paradigm4.com/wp-content/uploads/2014/06/Genomics-Benchmark-Technical-Report.pdf), which needs to compute svd for matrix up to 60K * 70K. I found many potential issues and would like to know if there's any plan undergoing that would expand the range of matrix computation based on Spark. Thanks. Author: Yuhao Yang <[email protected]> Closes apache#4200 from hhbyyh/rowMatrix and squashes the following commits: f7864d0 [Yuhao Yang] update auto logic for rowMatrix svd 23860e4 [Yuhao Yang] fix comment style e48a6e4 [Yuhao Yang] make latent svd computation constraint clear
- Loading branch information