-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
304 additions
and
0 deletions.
There are no files selected for viewing
35 changes: 35 additions & 0 deletions
35
examples/workshop/SkipErr/cifar10/configs/skiperror_cifar10_adamw_hypertune.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
direction: minimize | ||
gpus_per_task: 1 | ||
dataset_name: cifar10 | ||
seed: 0 | ||
hp: | ||
act_fn: | ||
sample_type: categorical | ||
sample_space: [relu, leaky_relu, gelu, tanh, hard_tanh] | ||
default: gelu | ||
num_layers: 8 | ||
hidden_dim: 128 | ||
batch_size: 200 | ||
epochs: 20 | ||
T: 10 | ||
optim: | ||
x: | ||
lr: | ||
sample_type: float | ||
sample_space: [[1e-2, 5e-1], null, true] | ||
default: 0.1 | ||
momentum: | ||
sample_type: float | ||
sample_space: [[0.0, 0.95], 0.05] | ||
default: 0.1 | ||
w: | ||
name: adamw | ||
lr: | ||
sample_type: float | ||
sample_space: [[3e-5, 1e-3], null, true] | ||
default: 0.0001 | ||
wd: | ||
sample_type: float | ||
sample_space: [[1e-5, 1e-2], null, true] | ||
default: 0.0001 | ||
momentum: 0.0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,269 @@ | ||
from typing import Callable | ||
import math | ||
from pathlib import Path | ||
import logging | ||
import sys | ||
import argparse | ||
|
||
# Core dependencies | ||
import jax | ||
import jax.numpy as jnp | ||
import numpy as np | ||
import optax | ||
from omegaconf import OmegaConf | ||
|
||
# pcax | ||
import pcax as px | ||
import pcax.predictive_coding as pxc | ||
import pcax.nn as pxnn | ||
import pcax.utils as pxu | ||
import pcax.functional as pxf | ||
from pcax import RKG | ||
|
||
sys.path.insert(0, "../../../") | ||
from data_utils import get_vision_dataloaders, seed_everything, get_config_value # noqa: E402 | ||
|
||
sys.path.pop(0) | ||
|
||
|
||
def seed_pcax_and_everything(seed: int | None = None): | ||
if seed is None: | ||
seed = 0 | ||
RKG.seed(seed) | ||
seed_everything(seed) | ||
|
||
|
||
logging.basicConfig(level=logging.INFO) | ||
|
||
|
||
STATUS_FORWARD = "forward" | ||
ACTIVATION_FUNCS = { | ||
None: lambda x: x, | ||
"relu": jax.nn.relu, | ||
"leaky_relu": jax.nn.leaky_relu, | ||
"gelu": jax.nn.gelu, | ||
"tanh": jax.nn.tanh, | ||
"hard_tanh": jax.nn.hard_tanh, | ||
"sigmoid": jax.nn.sigmoid, | ||
} | ||
|
||
|
||
class SkipError(pxc.EnergyModule): | ||
def __init__( | ||
self, | ||
num_layers: int, | ||
input_dim: tuple[int, int, int], | ||
hidden_dim: int, | ||
num_classes: int, | ||
act_fn: Callable[[jax.Array], jax.Array], | ||
) -> None: | ||
super().__init__() | ||
|
||
self.num_layers = num_layers | ||
self.input_dim = input_dim | ||
self.hidden_dim = hidden_dim | ||
self.num_classes = num_classes | ||
self.act_fn = px.static(act_fn) | ||
|
||
self.layer_dims = [math.prod(input_dim)] + [hidden_dim for _ in range(num_layers - 1)] + [num_classes] | ||
|
||
self.layers = [] | ||
for layer_input, layer_output in zip(self.layer_dims[:-1], self.layer_dims[1:]): | ||
self.layers.append(pxnn.Linear(layer_input, layer_output)) | ||
|
||
self.vodes = [] | ||
for layer_output in self.layer_dims[1:-1]: | ||
self.vodes.append(pxc.Vode()) | ||
self.vodes.append(pxc.Vode(pxc.ce_energy)) | ||
self.vodes[-1].h.frozen = True | ||
|
||
def __call__(self, x, y=None, beta=1.0): | ||
x = x.flatten() | ||
|
||
for i, layer in enumerate(self.layers): | ||
act_fn = self.act_fn if i < len(self.layers) - 1 else lambda x: x | ||
x = layer(x) | ||
x = act_fn(self.vodes[i](x)) | ||
|
||
if y is not None: | ||
self.vodes[-1].set("h", self.vodes[-1].get("u") - beta * (self.vodes[-1].get("u") - y)) | ||
return self.vodes[-1].get("u") | ||
|
||
|
||
@pxf.vmap(pxu.M(pxc.VodeParam | pxc.VodeParam.Cache).to((None, 0)), in_axes=(0, 0), out_axes=0) | ||
def forward(x, y, *, model: SkipError, beta=1.0): | ||
return model(x, y, beta=beta) | ||
|
||
|
||
@pxf.vmap( | ||
pxu.M(pxc.VodeParam | pxc.VodeParam.Cache).to((None, 0)), | ||
in_axes=(0,), | ||
out_axes=(None, 0), | ||
axis_name="batch", | ||
) | ||
def energy(x, *, model: SkipError): | ||
y_ = model(x, None) | ||
return jax.lax.psum(model.energy(), "batch"), y_ | ||
|
||
|
||
@pxf.jit(static_argnums=0) | ||
def train_on_batch( | ||
T: int, x: jax.Array, y: jax.Array, *, model: SkipError, optim_w: pxu.Optim, optim_h: pxu.Optim, beta: float = 1.0 | ||
): | ||
model.train() | ||
|
||
# Init step | ||
with pxu.step(model, pxc.STATUS.INIT, clear_params=pxc.VodeParam.Cache): | ||
forward(x, y, model=model) | ||
optim_h.init(pxu.M_hasnot(pxc.VodeParam, frozen=True)(model)) | ||
|
||
# Inference steps | ||
for _ in range(T): | ||
with pxu.step(model, clear_params=pxc.VodeParam.Cache): | ||
_, g = pxf.value_and_grad(pxu.M_hasnot(pxc.VodeParam, frozen=True).to(([False, True])), has_aux=True)( | ||
energy | ||
)(x, model=model) | ||
|
||
optim_h.step(model, g["model"]) | ||
optim_h.clear() | ||
|
||
# Learning step | ||
with pxu.step(model, clear_params=pxc.VodeParam.Cache): | ||
_, g = pxf.value_and_grad(pxu.M(pxnn.LayerParam).to([False, True]), has_aux=True)(energy)(x, model=model) | ||
optim_w.step(model, g["model"], scale_by=1.0 / x.shape[0]) | ||
|
||
|
||
@pxf.jit() | ||
def eval_on_batch(x: jax.Array, y: jax.Array, *, model: SkipError): | ||
model.eval() | ||
|
||
with pxu.step(model, pxc.STATUS.INIT, clear_params=pxc.VodeParam.Cache): | ||
y_ = forward(x, None, model=model).argmax(axis=-1) | ||
|
||
return (y_ == y).mean(), y_ | ||
|
||
|
||
def train(dl, T, *, model: SkipError, optim_w: pxu.Optim, optim_h: pxu.Optim, beta: float = 1.0): | ||
for i, (x, y) in enumerate(dl): | ||
train_on_batch(T, x, jax.nn.one_hot(y, 10), model=model, optim_w=optim_w, optim_h=optim_h, beta=beta) | ||
|
||
|
||
def eval(dl, *, model: SkipError): | ||
acc = [] | ||
ys_ = [] | ||
|
||
for x, y in dl: | ||
a, y_ = eval_on_batch(x, y, model=model) | ||
acc.append(a) | ||
ys_.append(y_) | ||
|
||
return np.mean(acc), np.concatenate(ys_) | ||
|
||
|
||
def run_experiment( | ||
*, | ||
dataset_name: str = "cifar10", | ||
num_layers: int, | ||
hidden_dim: int, | ||
num_classes: int = 10, | ||
act_fn: str | None, | ||
batch_size: int, | ||
epochs: int, | ||
T: int, | ||
optim_x_lr: float, | ||
optim_x_momentum: float, | ||
optim_w_name: str, | ||
optim_w_lr: float, | ||
optim_w_wd: float, | ||
optim_w_momentum: float, | ||
checkpoint_dir: Path | None = None, | ||
seed: int | None = None, | ||
) -> float: | ||
seed_pcax_and_everything(seed) | ||
|
||
# Channel first: (batch, channel, height, width) | ||
if checkpoint_dir is not None: | ||
checkpoint_dir.mkdir(parents=True, exist_ok=True) | ||
|
||
dataset = get_vision_dataloaders(dataset_name=dataset_name, batch_size=batch_size, should_normalize=False) | ||
|
||
input_dim = dataset.train_dataset[0][0].shape | ||
|
||
model = SkipError( | ||
num_layers=num_layers, | ||
input_dim=input_dim, | ||
hidden_dim=hidden_dim, | ||
num_classes=num_classes, | ||
act_fn=ACTIVATION_FUNCS[act_fn], | ||
) | ||
|
||
with pxu.step(model, pxc.STATUS.INIT, clear_params=pxc.VodeParam.Cache): | ||
forward(jnp.zeros((batch_size, math.prod(input_dim))), None, model=model) | ||
|
||
optim_h = pxu.Optim(optax.sgd(learning_rate=optim_x_lr, momentum=optim_x_momentum)) | ||
if optim_w_name == "adamw": | ||
optim_w = pxu.Optim( | ||
optax.adamw(learning_rate=optim_w_lr, weight_decay=optim_w_wd), | ||
pxu.M(pxnn.LayerParam)(model), | ||
) | ||
elif optim_w_name == "sgd": | ||
optim_w = pxu.Optim( | ||
optax.sgd(learning_rate=optim_w_lr, momentum=optim_w_momentum), pxu.M(pxnn.LayerParam)(model) | ||
) | ||
else: | ||
raise ValueError(f"Unknown optimizer name: {optim_w_name}") | ||
|
||
model_save_dir: Path | None = checkpoint_dir / dataset_name / "best_model" if checkpoint_dir is not None else None | ||
if model_save_dir is not None: | ||
model_save_dir.mkdir(parents=True, exist_ok=True) | ||
|
||
print("Training...") | ||
|
||
best_acc: float | None = None | ||
test_acc: list[float] = [] | ||
for epoch in range(epochs): | ||
train( | ||
dataset.train_dataloader, | ||
T=T, | ||
model=model, | ||
optim_w=optim_w, | ||
optim_h=optim_h, | ||
) | ||
mean_acc, _ = eval(dataset.test_dataloader, model=model) | ||
if np.isnan(mean_acc): | ||
logging.warning("Model diverged. Stopping training.") | ||
break | ||
test_acc.append(mean_acc) | ||
if epochs > 1 and model_save_dir is not None and (best_acc is None or mean_acc >= best_acc): | ||
best_acc = mean_acc | ||
print(f"Epoch {epoch + 1}/{epochs} - Test Accuracy: {mean_acc:.4f}") | ||
|
||
return min(test_acc) if test_acc else np.nan | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--config", type=str, default="configs/skiperror_cifar10_adamw_hypertune.yaml", help="Path to the config file." | ||
) | ||
|
||
args = parser.parse_args() | ||
config = OmegaConf.load(args.config) | ||
|
||
run_experiment( | ||
dataset_name=get_config_value(config, "dataset_name"), | ||
seed=get_config_value(config, "seed", required=False), | ||
num_layers=get_config_value(config, "hp/num_layers"), | ||
hidden_dim=get_config_value(config, "hp/hidden_dim"), | ||
act_fn=get_config_value(config, "hp/act_fn"), | ||
batch_size=get_config_value(config, "hp/batch_size"), | ||
epochs=get_config_value(config, "hp/epochs"), | ||
T=get_config_value(config, "hp/T"), | ||
optim_x_lr=get_config_value(config, "hp/optim/x/lr"), | ||
optim_x_momentum=get_config_value(config, "hp/optim/x/momentum"), | ||
optim_w_name=get_config_value(config, "hp/optim/w/name"), | ||
optim_w_lr=get_config_value(config, "hp/optim/w/lr"), | ||
optim_w_wd=get_config_value(config, "hp/optim/w/wd"), | ||
optim_w_momentum=get_config_value(config, "hp/optim/w/momentum"), | ||
checkpoint_dir=Path("results/skip_error"), | ||
) |