Skip to content

Commit

Permalink
Update 第五章 卷积神经网络(CNN)(修改版).md
Browse files Browse the repository at this point in the history
  • Loading branch information
Troyliu777 authored Nov 13, 2018
1 parent 581e5a8 commit 106bf2d
Showing 1 changed file with 38 additions and 4 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,9 @@

标签(空格分隔): 原创性 深度学习 协作
卷积神经网络负责人:

重庆大学研究生-刘畅 [email protected]

铪星创新科技联合创始人-杨文英;

# 第五章 卷积神经网络(CNN)
Expand Down Expand Up @@ -97,7 +99,9 @@

### 5.4.4 可分离卷积
在一个可分离卷积中,我们可以将内核操作拆分成多个步骤。我们用y = conv(x,k)表示卷积,其中y是输出图像,x是输入图像,k是核大小。这一步很简单。接下来,我们假设k可以由下面这个等式计算得出:k = k1.dot(k2)。这将使它成为一个可分离的卷积,因为我们可以通过对k1和k2做2个一维卷积来取得相同的结果,而不是用k做二维卷积。

![image](./img/ch5/img11.png)

以图像处理中的Sobel算子为例。你可以通过乘以向量[1,0,-1][1,2,1] .T获得相同的核大小。在执行相同的操作时,你只需要6个参数,而不是9个。上面的示例显示了所谓的空间可分离卷积。即将一个二维的卷积分离成两个一维卷积的操作。在神经网络中,为了减少网络参数,加速网络运算速度。我们通常使用的是一种叫深度可分离卷积的神经网络。
## 5.5 图解12种不同类型的2D卷积?

Expand All @@ -106,47 +110,60 @@ http://www.sohu.com/a/159591827_390227
## 5.6 2D卷积与3D卷积有什么区别?(重庆大学研究生-刘畅)
### 5.6.1 2D卷积
二维卷积操作如图所示,为了更直观的说明,分别展示了单通道和多通道的操作。假定只使用了1个滤波器,即输出图像只有一个channel。其中,针对单通道,输入图像的channel为1,卷积核尺寸为 (k_h, k_w, 1),卷积核在输入图像的空间维度上进行滑窗操作,每次滑窗和 (k_h, k_w)窗口内的值进行卷积操作,得到输出图像中的一个值。针对多通道,假定输入图像的channel为3,卷积核尺寸则为 (k_h, k_w, 3),则每次滑窗与3个channels上的 (k_h, k_w)窗口内的所有值进行卷积操作,得到输出图像中的一个值。

![image](./img/ch5/img12.png)
### 5.6.2 3D卷积
3D卷积操作如图所示,同样分为单通道和多通道,且假定只使用1个滤波器,即输出图像仅有一个channel。其中,针对单通道,与2D卷积不同之处在于,输入图像多了一个length维度,卷积核也多了一个k_l维度,因此3D卷积核的尺寸为(k_h, k_w, k_l),每次滑窗与 (k_h, k_w, k_l)窗口内的值进行相关操作,得到输出3D图像中的一个值.针对多通道,则与2D卷积的操作一样,每次滑窗与3个channels上的 (k_h, k_w, k_l) 窗口内的所有值进行相关操作,得到输出3D图像中的一个值。

![image](./img/ch5/img13.png)

## 5.7 有哪些池化方法?(重庆大学研究生-刘畅)
在构建卷积神经网络时,经常会使用池化操作,而池化层往往在卷积层后面,通过池化操作来降低卷积层输出的特征维度,同时可以防止过拟合现象。池化操作可以降低图像维度的原因,本质上是因为图像具有一种“静态性”的属性,这个意思是说在一个图像区域有用的特征极有可能在另一个区域同样有用。因此,为了描述一个大的图像,很直观的想法就是对不同位置的特征进行聚合统计。例如,可以计算图像在固定区域上特征的平均值 (或最大值)来代表这个区域的特征。[1]

### 5.7.1 一般池化(General Pooling)
池化操作与卷积操作不同,过程如下图。

![image](./img/ch5/img14.png)
池化操作过程如图所示,对固定区域的特征,使用某一个值来表示。最常见的池化操作有两种,分为平均池化mean pooling和最大池化max pooling

1、平均池化:计算图像区域的平均值作为该区域池化后的值。

2、最大池化:选图像区域的最大值作为该区域池化后的值。

上述的池化过程,相邻的池化窗口间没有重叠部分。
### 5.7.2 重叠池化(General Pooling)
重叠池化即是一种相邻池化窗口之间会有重叠区域的池化技术。论文中[2]中,作者使用了重叠池化,其他的设置都不变的情况下,top-1和top-5 的错误率分别减少了0.4% 和0.3%。
### 5.7.3 空金字塔池化(Spatial Pyramid Pooling)
空间金字塔池化可以将任意尺度的图像卷积特征转化为相同维度,这不仅可以让CNN处理任意尺度的图像,还能避免cropping和warping操作,导致一些信息的丢失。一般的卷积神经网络都需要固定输入图像大小,这是因为全连接层的输入需要固定输入维度,但在卷积操作时并没有对图像大小有限制,所以作者提出了空间金字塔池化方法,先让图像进行卷积操作,然后使用SPP方法转化成维度相同的特征,最后输入到全连接层。

![image](./img/ch5/img17.png)

根据论文作者所述,空间金字塔池化的思想来自于Spatial Pyramid Model,它是将一个pooling过程变成了多个尺度的pooling。用不同大小的池化窗口作用于卷积特征,这样就可以得到1X1,2X2,4X4的池化结果,由于conv5中共有256个滤波器,所以得到1个256维的特征,4个256个特征,以及16个256维的特征,然后把这21个256维特征链接起来输入全连接层,通过这种方式把不同大小的图像转化成相同维度的特征。

![image](./img/ch5/img18.png)

对于不同的图像,如果想要得到相同大小的pooling结果,就需要根据图像大小动态的计算池化窗口大小和步长。假设conv5输出的大小为a*a,需要得到n*n大小的池化结果,可以让窗口大小sizeX为[a/n],步长为[a/n]。下图展示了以conv5输出大小是13*13为例,spp算法的各层参数。

![image](./img/ch5/img19.png)

总结来说,SPP方法其实就是一种使用多个尺度的池化方法,可以获取图像中的多尺度信息。在卷积神经网络中加入SPP后,可以让CNN处理任意大小的输入,这让模型变得更加的灵活。

## 5.8 1x1卷积作用?(重庆大学研究生-刘畅)
1×1的卷积主要有以下两个方面的作用:

1. 实现信息的跨通道交互和整合。

2. 对卷积核通道数进行降维和升维,减小参数量。

下面详细解释一下:
**第一点 实现信息的跨通道交互和整合**
对1×1卷积层的探讨最初是出现在NIN的结构,论文作者的动机是利用MLP代替传统的线性卷积核,从而提高网络的表达能力。文中从跨通道池化的角度进行解释,认为文中提出的MLP其实等价于在传统卷积核后面接cccp层,从而实现多个feature map的线性组合,实现跨通道的信息整合。而查看代码实现,cccp层即等价于1×1卷积层。
**第二点 对卷积核通道数进行降维和升维,减小参数量**
1x1卷积层能带来降维和升维的效果,在一系列的GoogLeNet中体现的最明显。对于每一个Inception模块(如下图),左图是原始模块,右图是加入1×1卷积进行降维的模块。虽然左图的卷积核都比较小,但是当输入和输出的通道数很大时,卷积核的参数量也会变的很大,而右图加入1×1卷积后可以降低输入的通道数,因此卷积核参数、运算复杂度也就大幅度下降。以GoogLeNet的3a模块为例,输入的feature map是28×28×192,3a模块中1×1卷积通道为64,3×3卷积通道为128,5×5卷积通道为32,如果是左图结构,那么卷积核参数为1×1×192×64+3×3×192×128+5×5×192×32,而右图对3×3和5×5卷积层前分别加入了通道数为96和16的1×1卷积层,这样卷积核参数就变成了1×1×192×64+(1×1×192×96+3×3×96×128)+(1×1×192×16+5×5×16×32),参数大约减少到原来的三分之一。同时在并行pooling层后面加入1×1卷积层后也可以降低输出的feature map数量,
左图pooling后feature map是不变的,再加卷积层得到的feature map,
会使输出的feature map扩大到416,如果每个模块都这样,网络的输出会越来越大。而右图在pooling后面加了通道数为32的1×1卷积,使得输出的feature map数降到了256。GoogLeNet利用1×1的卷积降维后,得到了更为紧凑的网络结构,虽然总共有22层,但是参数数量却只是8层AlexNet的十二分之一,当然其中也有丢掉全连接层的原因。
1x1卷积层能带来降维和升维的效果,在一系列的GoogLeNet中体现的最明显。对于每一个Inception模块(如下图),左图是原始模块,右图是加入1×1卷积进行降维的模块。虽然左图的卷积核都比较小,但是当输入和输出的通道数很大时,卷积核的参数量也会变的很大,而右图加入1×1卷积后可以降低输入的通道数,因此卷积核参数、运算复杂度也就大幅度下降。以GoogLeNet的3a模块为例,输入的feature map是28×28×192,3a模块中1×1卷积通道为64,3×3卷积通道为128,5×5卷积通道为32,如果是左图结构,那么卷积核参数为1×1×192×64+3×3×192×128+5×5×192×32,而右图对3×3和5×5卷积层前分别加入了通道数为96和16的1×1卷积层,这样卷积核参数就变成了1×1×192×64+(1×1×192×96+3×3×96×128)+(1×1×192×16+5×5×16×32),参数大约减少到原来的三分之一。同时在并行pooling层后面加入1×1卷积层后也可以降低输出的feature map数量,左图pooling后feature map是不变的,再加卷积层得到的feature map,会使输出的feature map扩大到416,如果每个模块都这样,网络的输出会越来越大。而右图在pooling后面加了通道数为32的1×1卷积,使得输出的feature map数降到了256。GoogLeNet利用1×1的卷积降维后,得到了更为紧凑的网络结构,虽然总共有22层,但是参数数量却只是8层AlexNet的十二分之一,当然其中也有丢掉全连接层的原因。

![image](./img/ch5/img20.png)
而非常经典的ResNet结构,同样也使用了1×1卷积,并且是在3×3卷积层的前后都使用了,不仅进行了降维,还进行了升维,使得卷积层的输入和输出的通道数都减小,参数数量进一步减少,如下图结构所示。

![image](./img/ch5/img21.png)

## 5.9 卷积层和池化层有什么区别?
Expand Down Expand Up @@ -179,7 +196,6 @@ http://www.sohu.com/a/159591827_390227

总而言之,我们多倾向于选择多个相对小的卷积核来进行卷积。


## 5.11 每层卷积是否只能用一种尺寸的卷积核?
经典的神经网络,都属于层叠式网络,并且每层仅用一个尺寸的卷积核,例如VGG结构中使用了大量的3×3卷积层。事实上,同一层feature map可以分别使用多个不同尺寸的卷积核,以获得不同尺度的特征,再把这些特征结合起来,得到的特征往往比使用单一卷积核的要好,例如GoogLeNet、Inception系列的网络,均是每层使用了多个卷积核结构。如下图所示,输入的feature map在同一层,分别经过1×1、3×3、5×5三种不同尺寸的卷积核,再将分别得到的特征进行组合。
![image](./img/ch5/img24.png)
Expand Down Expand Up @@ -450,9 +466,13 @@ CNN的训练主要是在卷积层和子采样层的交互上,其主要的计

## 5.24 卷积神经网络的经验参数设置(重庆大学研究生-刘畅)
对于卷积神经网络的参数设置,没有很明确的指导原则,以下仅是一些经验集合。

1、learning-rate 学习率:学习率越小,模型收敛花费的时间就越长,但是可以逐步稳健的提高模型精确度。一般初始设置为0.1,然后每次除以0.2或者0.5来改进,得到最终值;

2、batch-size 样本批次容量:影响模型的优化程度和收敛速度,需要参考你的数据集大小来设置,具体问题具体分析,一般使用32或64,在计算资源允许的情况下,可以使用大batch进行训练。有论文提出,大batch可以加速训练速度,并取得更鲁棒的结果;

3、weight-decay 权重衰减:用来在反向传播中更新权重和偏置,一般设置为0.005或0.001;

4、epoch-number 训练次数:包括所有训练样本的一个正向传递和一个反向传递,训练至模型收敛即可;(注:和迭代次数iteration不一样)
总之,不是训练的次数越多,测试精度就会越高。会有各种原因导致过拟合,比如一种可能是预训练的模型太复杂,而使用的数据集样本数量太少,种类太单一。

Expand Down Expand Up @@ -617,14 +637,18 @@ dropout的基本思想就是在训练网络时随机的移除单独的激活值
我们首先了解一个概念,感受野,即每个神经元仅与输入神经元相连接的一块区域。
在图像卷积操作中,神经元在空间维度上是局部连接,但在深度上是全连接。局部连接的思想,是受启发于生物学里的视觉系统结构,视觉皮层的神经元就是仅用局部接受信息。对于二维图像,局部像素关联性较强。这种局部连接保证了训练后的滤波器能够对局部特征有最强的响应,使神经网络可以提取数据的局部特征;
下图是一个很经典的图示,左边是全连接,右边是局部连接。

![image](./img/ch5/img63.png)

对于一个1000 × 1000的输入图像而言,如果下一个隐藏层的神经元数目为10^6个,采用全连接则有1000 × 1000 × 10^6 = 10^12个权值参数,如此巨大的参数量几乎难以训练;而采用局部连接,隐藏层的每个神经元仅与图像中10 × 10的局部图像相连接,那么此时的权值参数数量为10 × 10 × 10^6 = 10^8,将直接减少4个数量级。

### 5.27.2 权值共享
权值共享,即计算同一深度的神经元时采用的卷积核参数是共享的。权值共享在一定程度上讲是有意义的,是由于在神经网络中,提取的底层边缘特征与其在图中的位置无关。但是在另一些场景中是无意的,如在人脸识别任务,我们期望在不同的位置学到不同的特征。
需要注意的是,权重只是对于同一深度切片的神经元是共享的。在卷积层中,通常采用多组卷积核提取不同的特征,即对应的是不同深度切片的特征,而不同深度切片的神经元权重是不共享。相反,偏置这一权值对于同一深度切片的所有神经元都是共享的。
权值共享带来的好处是大大降低了网络的训练难度。如下图,假设在局部连接中隐藏层的每一个神经元连接的是一个10 × 10的局部图像,因此有10 × 10个权值参数,将这10 × 10个权值参数共享给剩下的神经元,也就是说隐藏层中10^6个神经元的权值参数相同,那么此时不管隐藏层神经元的数目是多少,需要训练的参数就是这 10 × 10个权值参数(也就是卷积核的大小)。

![image](./img/ch5/img64.png)

这里就体现了卷积神经网络的奇妙之处,使用少量的参数,却依然能有非常出色的性能。上述仅仅是提取图像一种特征的过程。如果要多提取出一些特征,可以增加多个卷积核,不同的卷积核能够得到图像不同尺度下的特征,称之为特征图(feature map)。

### 5.27.3 池化操作
Expand All @@ -640,15 +664,25 @@ dropout的基本思想就是在训练网络时随机的移除单独的激活值
## 5.29 举例理解Local-Conv的作用(重庆大学研究生-刘畅)
并不是所有的卷积都会进行权重共享,在某些特定任务中,会使用不权重共享的卷积。下面通过人脸这一任务来进行讲解。在读人脸方向的一些paper时,会发现很多都会在最后加入一个Local Connected Conv,也就是不进行权重共享的卷积层。总的来说,这一步的作用就是使用3D模型来将人脸对齐,从而使CNN发挥最大的效果。
![image](./img/ch5/img66.png)

截取论文中的一部分图,经过3D对齐以后,形成的图像均是152×152,输入到上述的网络结构中。该结构的参数如下:

Conv:32个11×11×3的卷积核

max-pooling: 3×3,stride=2,

Conv: 16个9×9的卷积核,

Local-Conv: 16个9×9的卷积核,

Local-Conv: 16个7×7的卷积核,

Local-Conv: 16个5×5的卷积核,

Fully-connected: 4096维

Softmax: 4030维。

前三层的目的在于提取低层次的特征,比如简单的边和纹理。其中Max-pooling层使得卷积的输出对微小的偏移情况更加鲁棒。但不能使用更多的Max-pooling层,因为太多的Max-pooling层会使得网络损失图像信息。全连接层将上一层的每个单元和本层的所有单元相连,用来捕捉人脸图像不同位置特征之间的相关性。最后使用softmax层用于人脸分类。
中间三层都是使用参数不共享的卷积核,之所以使用参数不共享,有如下原因:

Expand Down

0 comments on commit 106bf2d

Please sign in to comment.