Skip to content

Commit

Permalink
Update 第五章 卷积神经网络(CNN).md
Browse files Browse the repository at this point in the history
  • Loading branch information
Ecohnoch authored Apr 25, 2019
1 parent 64eca3c commit 2c9ad3b
Showing 1 changed file with 44 additions and 0 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -376,6 +376,49 @@ Softmax: 4030维。
(2)不共享的卷积核并不增加inference时特征的计算量,仅会增加训练时的计算量。
使用不共享的卷积核,由于需要训练的参数量大大增加,因此往往需要通过其他方法增加数据量。

## 5.22 NetVLAD池化 (贡献者:熊楚原-中国人民大学)

NetVLAD是论文\[15\]提出的一个局部特征聚合的方法。

在传统的网络里面,例如VGG啊,最后一层卷积层输出的特征都是类似于Batchsize x 3 x 3 x 512的这种东西,然后会经过FC聚合,或者进行一个Global Average Pooling(NIN里的做法),或者怎么样,变成一个向量型的特征,然后进行Softmax or 其他的Loss。

这种方法说简单点也就是输入一个图片或者什么的结构性数据,然后经过特征提取得到一个长度固定的向量,之后可以用度量的方法去进行后续的操作,比如分类啊,检索啊,相似度对比等等。

那么NetVLAD考虑的主要是最后一层卷积层输出的特征这里,我们不想直接进行欠采样或者全局映射得到特征,对于最后一层输出的W x H x D,设计一个新的池化,去聚合一个“局部特征“,这即是NetVLAD的作用。

NetVLAD的一个输入是一个W x H x D的图像特征,例如VGG-Net最后的3 x 3 x 512这样的矩阵,在网络中还需加一个维度为Batchsize。

NetVLAD还需要另输入一个标量K即表示VLAD的聚类中心数量,它主要是来构成一个矩阵C,是通过原数据算出来的每一个$W \times H$特征的聚类中心,C的shape即$C: K \times D$,然后根据三个输入,VLAD是计算下式的V:

$$V(j, k) = \sum_{i=1}^{N}{a_k(x_i)(x_i(j) - c_k(j))}$$

其中j表示维度,从1到D,可以看到V的j是和输入与c对应的,对每个类别k,都对所有的x进行了计算,如果$x_i$属于当前类别k,$a_k=1$,否则$a_k=0$,计算每一个x和它聚类中心的残差,然后把残差加起来,即是每个类别k的结果,最后分别L2正则后拉成一个长向量后再做L2正则,正则非常的重要,因为这样才能统一所有聚类算出来的值,而残差和的目的主要是消减不同聚类上的分布不均,两者共同作用才能得到最后正常的输出。

输入与输出如下图所示:

![image](http://www.ecohnoch.cn/img/netvlad.jpeg)

中间得到的K个D维向量即是对D个x都进行了与聚类中心计算残差和的过程,最终把K个D维向量合起来后进行即得到最终输出的$K \times D$长度的一维向量。

而VLAD本身是不可微的,因为上面的a要么是0要么是1,表示要么当前描述x是当前聚类,要么不是,是个离散的,NetVLAD为了能够在深度卷积网络里使用反向传播进行训练,对a进行了修正。

那么问题就是如何重构一个a,使其能够评估当前的这个x和各个聚类的关联程度?用softmax来得到:

$$a_k = \frac{e^{W_k^T x_i + b_k}}{e^{W_{k'}^T x_i + b_{k'}}}$$

将这个把上面的a替换后,即是NetVLAD的公式,可以进行反向传播更新参数。

所以一共有三个可训练参数,上式a中的$W: K \times D$,上式a中的$b: K \times 1$,聚类中心$c: K \times D$,而原始VLAD只有一个参数c。

最终池化得到的输出是一个恒定的K x D的一维向量(经过了L2正则),如果带Batchsize,输出即为Batchsize x (K x D)的二维矩阵。

NetVLAD作为池化层嵌入CNN网络即如下图所示,

![image](http://www.ecohnoch.cn/img/netvlad_emb.png)

原论文中采用将传统图像检索方法VLAD进行改进后应用在CNN的池化部分作为一种另类的局部特征池化,在场景检索上取得了很好的效果。

后续相继又提出了ActionVLAD、ghostVLAD等改进。


## 参考文献
Expand Down Expand Up @@ -408,5 +451,6 @@ Softmax: 4030维。

[14] Jianxin W U , Gao B B , Wei X S , et al. Resource-constrained deep learning: challenges and practices[J]. Scientia Sinica(Informationis), 2018.

[15] Arandjelovic R , Gronat P , Torii A , et al. [IEEE 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - Las Vegas, NV, USA (2016.6.27-2016.6.30)] 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - NetVLAD: CNN Architecture for Weakly Supervised Place Recognition[C]// 2016:5297-5307.


0 comments on commit 2c9ad3b

Please sign in to comment.