Skip to content

Toolkit for neural network visualization, utilizing TensorFlow and Keras for model interpretation.

Notifications You must be signed in to change notification settings

lixavi/neura-vis

Repository files navigation

Neura Vis

Toolkit for neural network visualization, utilizing TensorFlow and Keras for model interpretation.

Features

  • Model Visualization: Visualize layer activations and filters.
  • Interpretation Techniques: Implement Grad-CAM for model interpretation.
  • Data Handling: Load and preprocess data efficiently.
  • Image Utilities: Load and visualize images easily.

Usage

  • Install necessary dependencies.
  • Define and train your neural network model.
  • Use NeuraVis to visualize layer activations, filters, and perform model interpretation.

Example

from models.model import NeuralNetwork
from visualization.activations import visualize_activations
from utils.data_utils import load_data, preprocess_data

# Load and preprocess data
data = load_data()
preprocessed_data = preprocess_data(data)

# Define and train neural network model
model = NeuralNetwork().build_model()
model.fit(preprocessed_data, labels)

# Visualize layer activations
visualize_activations(model, preprocessed_data)

Dependencies

TensorFlow
Keras
scikit-learn
matplotlib
OpenCV

About

Toolkit for neural network visualization, utilizing TensorFlow and Keras for model interpretation.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published