forked from PaddlePaddle/PaddleSlim
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update YOLO act dataloader (PaddlePaddle#1336)
- Loading branch information
Showing
22 changed files
with
765 additions
and
647 deletions.
There are no files selected for viewing
27 changes: 0 additions & 27 deletions
27
example/auto_compression/pytorch_yolov5/configs/yolov5_reader.yml
This file was deleted.
Oops, something went wrong.
11 changes: 6 additions & 5 deletions
11
example/auto_compression/pytorch_yolov5/configs/yolov5s_qat_dis.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
from pycocotools.coco import COCO | ||
import cv2 | ||
import os | ||
import numpy as np | ||
import paddle | ||
|
||
|
||
class COCOValDataset(paddle.io.Dataset): | ||
def __init__(self, | ||
dataset_dir=None, | ||
image_dir=None, | ||
anno_path=None, | ||
img_size=[640, 640]): | ||
self.dataset_dir = dataset_dir | ||
self.image_dir = image_dir | ||
self.img_size = img_size | ||
self.ann_file = os.path.join(dataset_dir, anno_path) | ||
self.coco = COCO(self.ann_file) | ||
ori_ids = list(sorted(self.coco.imgs.keys())) | ||
# check gt bbox | ||
clean_ids = [] | ||
for idx in ori_ids: | ||
ins_anno_ids = self.coco.getAnnIds(imgIds=[idx], iscrowd=False) | ||
instances = self.coco.loadAnns(ins_anno_ids) | ||
num_bbox = 0 | ||
for inst in instances: | ||
if inst.get('ignore', False): | ||
continue | ||
if 'bbox' not in inst.keys(): | ||
continue | ||
elif not any(np.array(inst['bbox'])): | ||
continue | ||
else: | ||
num_bbox += 1 | ||
if num_bbox > 0: | ||
clean_ids.append(idx) | ||
self.ids = clean_ids | ||
|
||
def __getitem__(self, idx): | ||
img_id = self.ids[idx] | ||
img = self._get_img_data_from_img_id(img_id) | ||
img, scale_factor = self.image_preprocess(img, self.img_size) | ||
return { | ||
'image': img, | ||
'im_id': np.array([img_id]), | ||
'scale_factor': scale_factor | ||
} | ||
|
||
def __len__(self): | ||
return len(self.ids) | ||
|
||
def _get_img_data_from_img_id(self, img_id): | ||
img_info = self.coco.loadImgs(img_id)[0] | ||
img_path = os.path.join(self.dataset_dir, self.image_dir, | ||
img_info['file_name']) | ||
img = cv2.imread(img_path) | ||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | ||
return img | ||
|
||
def _generate_scale(self, im, target_shape, keep_ratio=True): | ||
""" | ||
Args: | ||
im (np.ndarray): image (np.ndarray) | ||
Returns: | ||
im_scale_x: the resize ratio of X | ||
im_scale_y: the resize ratio of Y | ||
""" | ||
origin_shape = im.shape[:2] | ||
if keep_ratio: | ||
im_size_min = np.min(origin_shape) | ||
im_size_max = np.max(origin_shape) | ||
target_size_min = np.min(target_shape) | ||
target_size_max = np.max(target_shape) | ||
im_scale = float(target_size_min) / float(im_size_min) | ||
if np.round(im_scale * im_size_max) > target_size_max: | ||
im_scale = float(target_size_max) / float(im_size_max) | ||
im_scale_x = im_scale | ||
im_scale_y = im_scale | ||
else: | ||
resize_h, resize_w = target_shape | ||
im_scale_y = resize_h / float(origin_shape[0]) | ||
im_scale_x = resize_w / float(origin_shape[1]) | ||
return im_scale_y, im_scale_x | ||
|
||
def image_preprocess(self, img, target_shape): | ||
# Resize image | ||
im_scale_y, im_scale_x = self._generate_scale(img, target_shape) | ||
img = cv2.resize( | ||
img, | ||
None, | ||
None, | ||
fx=im_scale_x, | ||
fy=im_scale_y, | ||
interpolation=cv2.INTER_LINEAR) | ||
# Pad | ||
im_h, im_w = img.shape[:2] | ||
h, w = target_shape[:] | ||
if h != im_h or w != im_w: | ||
canvas = np.ones((h, w, 3), dtype=np.float32) | ||
canvas *= np.array([114.0, 114.0, 114.0], dtype=np.float32) | ||
canvas[0:im_h, 0:im_w, :] = img.astype(np.float32) | ||
img = canvas | ||
img = np.transpose(img / 255, [2, 0, 1]) | ||
scale_factor = np.array([im_scale_y, im_scale_x]) | ||
return img.astype(np.float32), scale_factor | ||
|
||
|
||
class COCOTrainDataset(COCOValDataset): | ||
def __getitem__(self, idx): | ||
img_id = self.ids[idx] | ||
img = self._get_img_data_from_img_id(img_id) | ||
img, scale_factor = self.image_preprocess(img, self.img_size) | ||
return {'x2paddle_images': img} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.