forked from PaddlePaddle/PaddleSlim
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
948 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License" | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from .lsq_act import ActLSQplusQuanter | ||
from .lsq_weight import WeightLSQplusQuanter | ||
from .pact import PACTQuanter | ||
|
||
__all__ = ["ActLSQplusQuanter", "WeightLSQplusQuanter", "PACTQuanter"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import abc | ||
import paddle | ||
import numpy as np | ||
from paddle.quantization.base_quanter import BaseQuanter | ||
|
||
|
||
class BaseFakeQuanterLayer(BaseQuanter): | ||
def __init__( | ||
self, | ||
quant_bits=8, | ||
sign=True, | ||
symmetric=True, ): | ||
super(BaseFakeQuanterLayer, self).__init__() | ||
self._quant_bits = quant_bits | ||
self._sign = sign | ||
self._symmetric = symmetric | ||
|
||
self._min = None | ||
self._max = None | ||
self._qmin = None | ||
self._qmax = None | ||
|
||
self._scale = None | ||
self._zero_point = None | ||
|
||
@property | ||
def qmin_qmax(self): | ||
""" Get the range of the integer.""" | ||
if self._qmin is not None and self._qmax is not None: | ||
return self.qmin, self.qmax | ||
if self._sign: | ||
self.qmin = -2**(self.bit_length() - 1) | ||
self.qmax = 2**(self.bit_length() - 1) - 1 | ||
else: | ||
self.qmin = 0 | ||
self.qmax = 2**self.bit_length() | ||
return self.qmin, self.qmax |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import paddle | ||
import numpy as np | ||
import math | ||
from paddle.framework import ParamAttr | ||
from paddle.nn import Layer | ||
from paddle.nn.initializer import Constant | ||
from paddle.utils import unique_name | ||
from paddle.quantization.factory import QuanterFactory | ||
from .base_fake_quanter import BaseFakeQuanterLayer | ||
from .lsq_func import LsqFunc, LsqPlusActFunc, round | ||
|
||
|
||
class ActLSQplusQuanter(QuanterFactory): | ||
r""" | ||
Activation quantizer. More details can be found in | ||
https://arxiv.org/pdf/1902.08153.pdf and https://arxiv.org/pdf/2004.09576.pdf. | ||
Args: | ||
per_channel(bool): whether layer-wise or channel-wise quantization, where True for layer-wise quantization and False for channel-wise quantization. | ||
batch_init(int): number of batches that collect Gaussian approximation for the weight distribution in each layer. | ||
quant_linear(bool): whether the weight is from Linear. | ||
dtype(str): data type. | ||
name(str): the name of the layer. | ||
reduce_type(str): the reduce type which is needed when parallel training. | ||
Examples: | ||
.. code-block:: python | ||
from paddle.quantization import QuantConfig | ||
from paddle.quantization.quanters import ActLSQplusQuanter, WeightLSQplusQuanter | ||
weight_quanter = WeightLSQplusQuanter() | ||
act_quanter = ActLSQplusQuanter() | ||
q_config = QuantConfig(activation=act_quanter, weight=weight_quanter) | ||
""" | ||
|
||
def __init__(self, | ||
quant_bits=8, | ||
sign=True, | ||
symmetric=True, | ||
per_channel=False, | ||
batch_init=20, | ||
quant_linear=False, | ||
reduce_type=None, | ||
dtype='float32', | ||
name=None): | ||
super(ActLSQplusQuanter, self).__init__( | ||
quant_bits=quant_bits, | ||
sign=sign, | ||
symmetric=symmetric, | ||
per_channel=per_channel, | ||
batch_init=batch_init, | ||
quant_linear=quant_linear, | ||
reduce_type=reduce_type, | ||
dtype=dtype, | ||
name=name) | ||
|
||
def _get_class(self): | ||
return ActLSQplusQuanterLayer | ||
|
||
|
||
class ActLSQplusQuanterLayer(BaseFakeQuanterLayer): | ||
def __init__(self, | ||
layer, | ||
quant_bits=8, | ||
sign=True, | ||
symmetric=True, | ||
per_channel=False, | ||
batch_init=20, | ||
quant_linear=False, | ||
reduce_type=None, | ||
dtype='float32', | ||
name=None): | ||
super(ActLSQplusQuanterLayer, self).__init__() | ||
self._symmetric = symmetric | ||
self._per_channel = per_channel | ||
self._quant_linear = quant_linear | ||
self._batch_init = batch_init | ||
self._name = name | ||
self._quant_axis = 1 if quant_linear else 0 | ||
self._collect_axis = 0 if quant_linear else 1 | ||
self._reduce_type = reduce_type | ||
self.div = 2**self._quant_bits - 1 | ||
self.qmin, self.qmax = self.qmin_qmax | ||
|
||
self._current_batch_id = 0 | ||
self._init_state = 0 | ||
|
||
scale_prefix = ("{}.scale".format(name) | ||
if name else 'quant_dequant.scale') | ||
self._scale_name = unique_name.generate(scale_prefix) | ||
|
||
s_attr = ParamAttr( | ||
name=self._scale_name, initializer=Constant(1.0), trainable=True) | ||
self._scale = self.create_parameter(shape=[1], attr=s_attr, dtype=dtype) | ||
self._scale.stop_gradient = False | ||
|
||
if not self._symmetric: | ||
beta_prefix = ("{}.beta".format(name) | ||
if name else 'quant_dequant.beta') | ||
self._beta_name = unique_name.generate(beta_prefix) | ||
|
||
beta_attr = ParamAttr( | ||
name=self._beta_name, initializer=Constant(0.0), trainable=True) | ||
self._beta = self.create_parameter( | ||
shape=[1], attr=beta_attr, dtype='float32') | ||
self._beta.stop_gradient = False | ||
|
||
def init_params(self, activation): | ||
self.g = paddle.to_tensor( | ||
1.0 / math.sqrt(activation.numel() * self.qmax)) | ||
min_a = paddle.min(activation.detach()) | ||
max_a = paddle.max(activation.detach()) | ||
self._scale.set_value((max_a - min_a) / (self.qmax - self.qmin)) | ||
if not self._symmetric: | ||
self._beta.set_value(min_a - self._scale * self.qmin) | ||
self._init_state += 1 | ||
|
||
def collect_gaussian(self, activation): | ||
min_a = paddle.min(activation.detach()) | ||
max_a = paddle.max(activation.detach()) | ||
self._scale.set_value(self._scale * 0.9 + 0.1 * (max_a - min_a) / | ||
(self.qmax - self.qmin)) | ||
if not self._symmetric: | ||
self._beta.set_value(self._scale * 0.9 + 0.1 * | ||
(min_a - self._scale * self.qmin)) | ||
self._init_state += 1 | ||
|
||
def forward(self, activation): | ||
|
||
if self._reduce_type == "max": | ||
paddle.distributed.all_reduce( | ||
self._scale, op=paddle.distributed.ReduceOp.MAX) | ||
|
||
if not self._symmetric and self._reduce_type == "max": | ||
paddle.distributed.all_reduce( | ||
self._beta, op=paddle.distributed.ReduceOp.MAX) | ||
|
||
if self._init_state == 0: | ||
self.init_params(activation) | ||
elif self._init_state < self._batch_init: | ||
self.collect_gaussian(activation) | ||
|
||
activation.stop_gradient = False | ||
|
||
if not self._symmetric: | ||
q_a = LsqPlusActFunc.apply(activation, self._scale, self._beta, | ||
self.g, self.qmin, self.qmax) | ||
else: | ||
q_a = LsqFunc.apply( | ||
activation, | ||
self._scale, | ||
self.g, | ||
self.qmin, | ||
self.qmax, | ||
per_channel=False) | ||
return q_a | ||
|
||
def bit_length(self): | ||
""" Return the bit length of quantized data. | ||
""" | ||
return self._quant_bits | ||
|
||
def quant_axis(self): | ||
""" Return quantization axis. | ||
""" | ||
return self._quant_axis | ||
|
||
def scales(self): | ||
""" Return output scales. | ||
""" | ||
return self._scale | ||
|
||
def zero_points(self): | ||
""" Return output zero points. | ||
""" | ||
if self._zero_point is None: | ||
if self._symmetric: | ||
if self._sign: | ||
self._zero_point = 0 | ||
else: | ||
self._zero_point = (self.qmax + self.qmin) / 2 | ||
else: | ||
self._zero_point = self.qmin - round(self.qmin / self._scale) | ||
self._zero_point = paddle.clip(self._zero_point, self.qmin, | ||
self.qmax) | ||
return self._zero_point |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import math | ||
import paddle | ||
from paddle.autograd import PyLayer | ||
|
||
|
||
def round(x): | ||
sign = paddle.sign(x) | ||
x = sign * paddle.floor(paddle.abs(x) + 0.5) | ||
return x | ||
|
||
|
||
class LsqFunc(PyLayer): | ||
@staticmethod | ||
def forward(ctx, weight, alpha, g, Qn, Qp, per_channel=False, quant_axis=0): | ||
ctx.save_for_backward(weight, alpha) | ||
ctx.other = g, Qn, Qp, per_channel, quant_axis | ||
if per_channel: | ||
sizes = weight.shape | ||
weight = weight.reshape((weight.shape[quant_axis], -1)) | ||
weight = weight.transpose((1, 0)) | ||
alpha = paddle.broadcast_to(alpha, weight.shape) | ||
quant_w = round(paddle.divide(weight, alpha)).clip(Qn, Qp) | ||
quant_w = quant_w * alpha | ||
quant_w = quant_w.transpose((1, 0)) | ||
quant_w = quant_w.reshape(sizes) | ||
else: | ||
quant_w = round(paddle.divide(weight, alpha)).clip(Qn, Qp) | ||
quant_w = quant_w * alpha | ||
return quant_w | ||
|
||
@staticmethod | ||
def backward(ctx, grad_weight): | ||
weight, alpha = ctx.saved_tensor() | ||
g, Qn, Qp, per_channel, quant_axis = ctx.other | ||
if per_channel: | ||
sizes = weight.shape | ||
weight = weight.reshape((weight.shape[quant_axis], -1)) | ||
weight = weight.transpose((1, 0)) | ||
alpha = paddle.broadcast_to(alpha, weight.shape) | ||
q_w = paddle.divide(weight, alpha) | ||
q_w = q_w.transpose((1, 0)) | ||
q_w = q_w.reshape(sizes) | ||
else: | ||
q_w = paddle.divide(weight, alpha) | ||
lower_flag = paddle.cast((q_w < Qn), 'float32') | ||
upper_flag = paddle.cast((q_w > Qp), 'float32') | ||
middle_flag = 1.0 - lower_flag - upper_flag | ||
if per_channel: | ||
grad_alpha = ( | ||
(lower_flag * Qn + upper_flag * Qp + middle_flag * round(q_w) - | ||
middle_flag * q_w) * grad_weight * g) | ||
grad_alpha = grad_alpha.reshape((grad_alpha.shape[quant_axis], | ||
-1)).sum(axis=1) | ||
else: | ||
grad_alpha = (( | ||
(lower_flag * Qn + upper_flag * Qp + middle_flag * round(q_w) | ||
- middle_flag * q_w) * grad_weight * g).sum().unsqueeze( | ||
axis=0)[0]) | ||
grad_weight = middle_flag * grad_weight | ||
return grad_weight, grad_alpha | ||
|
||
|
||
class LsqPlusActFunc(PyLayer): | ||
@staticmethod | ||
def forward(ctx, x, alpha, beta, g, Qn, Qp): | ||
ctx.save_for_backward(x, alpha, beta) | ||
ctx.other = g, Qn, Qp | ||
quant_x = round(paddle.divide((x - beta), alpha)).clip(Qn, Qp) | ||
return quant_x * alpha + beta | ||
|
||
@staticmethod | ||
def backward(ctx, grad_x): | ||
x, alpha, beta = ctx.saved_tensor() | ||
g, Qn, Qp = ctx.other | ||
q_x = (x - beta) / alpha | ||
lower_flag = paddle.cast((q_x < Qn), 'float32') | ||
upper_flag = paddle.cast((q_x > Qp), 'float32') | ||
middle_flag = 1.0 - lower_flag - upper_flag | ||
grad_alpha = (( | ||
(lower_flag * Qn + upper_flag * Qp + middle_flag * round(q_x) - | ||
middle_flag * q_x) * grad_x * g).sum().unsqueeze(axis=0)[0]) | ||
grad_beta = (((lower_flag + upper_flag) * grad_x * g).sum().unsqueeze( | ||
axis=0)[0]) | ||
grad_x = middle_flag * grad_x | ||
return grad_x, grad_alpha, grad_beta |
Oops, something went wrong.