Skip to content

Commit

Permalink
Add an example of regular hypervolume-base algorithm
Browse files Browse the repository at this point in the history
This algorithm illustrates the use of the “fit_attr” parameters on selection methods.
  • Loading branch information
cyrilpic committed Feb 17, 2017
1 parent 2e3da7e commit 0501efa
Showing 1 changed file with 192 additions and 0 deletions.
192 changes: 192 additions & 0 deletions examples/ga/mo_rhv.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
# This file is part of DEAP.
#
# DEAP is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# DEAP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with DEAP. If not, see <http://www.gnu.org/licenses/>.

# Regular Hypervolume-based Algorithm (greedy version)

import array
import random
import json

import numpy

from math import sqrt

from deap import algorithms
from deap import base
from deap import benchmarks
from deap.benchmarks.tools import diversity, convergence, hypervolume
from deap.tools.indicator import hv
from deap import creator
from deap import tools


creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0))
# Hypervolume contribution
creator.create("FitnessHV", base.Fitness, weights=(1.0,))
creator.create("Individual", array.array, typecode='d',
fitness=creator.FitnessMin, fitness_hv=creator.FitnessHV)

toolbox = base.Toolbox()

# Problem definition
# Functions zdt1, zdt2, zdt3, zdt6 have bounds [0, 1]
BOUND_LOW, BOUND_UP = 0.0, 1.0

# Functions zdt4 has bounds x1 = [0, 1], xn = [-5, 5], with n = 2, ..., 10
# BOUND_LOW, BOUND_UP = [0.0] + [-5.0]*9, [1.0] + [5.0]*9

# Functions zdt1, zdt2, zdt3 have 30 dimensions, zdt4 and zdt6 have 10
NDIM = 30

def uniform(low, up, size=None):
try:
return [random.uniform(a, b) for a, b in zip(low, up)]
except TypeError:
return [random.uniform(a, b) for a, b in zip([low] * size, [up] * size)]


def hypervolume_contrib(front, **kargs):
"""Returns the hypervolume contribution of each individual. The provided
*front* should be a set of non-dominated individuals having each a
:attr:`fitness` attribute.
"""
# Must use wvalues * -1 since hypervolume use implicit minimization
# And minimization in deap use max on -obj
wobj = numpy.array([ind.fitness.wvalues for ind in front]) * -1
ref = kargs.get("ref", None)
if ref is None:
ref = numpy.max(wobj, axis=0) + 1

total_hv = hv.hypervolume(wobj, ref)

def contribution(i):
# The contribution of point p_i in point set P
# is the hypervolume of P without p_i
return total_hv - hv.hypervolume(numpy.concatenate((wobj[:i], wobj[i+1:])), ref)

# Parallelization note: Cannot pickle local function
return map(contribution, range(len(front)))


toolbox.register("attr_float", uniform, BOUND_LOW, BOUND_UP, NDIM)
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.attr_float)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

toolbox.register("evaluate", benchmarks.zdt1)
toolbox.register("mate", tools.cxSimulatedBinaryBounded, low=BOUND_LOW, up=BOUND_UP, eta=20.0)
toolbox.register("mutate", tools.mutPolynomialBounded, low=BOUND_LOW, up=BOUND_UP, eta=20.0, indpb=1.0/NDIM)
toolbox.register("sort", tools.sortLogNondominated)
# Selection is based on HV fitness
toolbox.register("select", tools.selBest, fit_attr="fitness_hv")

def main(seed=None):
random.seed(seed)

NGEN = 250
MU = 100
CXPB = 0.9

stats = tools.Statistics(lambda ind: ind.fitness.values)
# stats.register("avg", numpy.mean, axis=0)
# stats.register("std", numpy.std, axis=0)
stats.register("min", numpy.min, axis=0)
stats.register("max", numpy.max, axis=0)

logbook = tools.Logbook()
logbook.header = "gen", "evals", "std", "min", "avg", "max"

pop = toolbox.population(n=MU)

# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in pop if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit

record = stats.compile(pop)
logbook.record(gen=0, evals=len(invalid_ind), **record)
print(logbook.stream)

# Begin the generational process
for gen in range(1, NGEN):
# Vary the population
offspring = tools.selRandom(pop, len(pop))
offspring = [toolbox.clone(ind) for ind in offspring]

for ind1, ind2 in zip(offspring[::2], offspring[1::2]):
if random.random() <= CXPB:
toolbox.mate(ind1, ind2)

toolbox.mutate(ind1)
toolbox.mutate(ind2)
del ind1.fitness.values, ind2.fitness.values

# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit

# Select the next generation population
pop = pop + offspring
fronts = toolbox.sort(pop, len(pop))
chosen = []
for i, front in enumerate(fronts):
# Move is front to chosen population til it is almost full
if len(chosen) + len(front) <= MU:
chosen.extend(front)
else:
# Assign hypervolume contribution to individuals of front that
# cannot be completely move over to chosen individuals
fitness_hv = hypervolume_contrib(front)
for ind, fit_hv in zip(front, fitness_hv):
ind.fitness_hv.values = (fit_hv,)
# Fill chosen with best indiviuals from inspect front
# (based on hypervolume contribution)
chosen.extend(toolbox.select(front, MU - len(chosen)))
break

pop = chosen

record = stats.compile(pop)
logbook.record(gen=gen, evals=len(invalid_ind), **record)
print(logbook.stream)

print("Final population hypervolume is %f" % hypervolume(pop, [11.0, 11.0]))

return pop, logbook

if __name__ == "__main__":
# with open("pareto_front/zdt1_front.json") as optimal_front_data:
# optimal_front = json.load(optimal_front_data)
# Use 500 of the 1000 points in the json file
# optimal_front = sorted(optimal_front[i] for i in range(0, len(optimal_front), 2))

pop, stats = main()
# pop.sort(key=lambda x: x.fitness.values)

# print(stats)
# print("Convergence: ", convergence(pop, optimal_front))
# print("Diversity: ", diversity(pop, optimal_front[0], optimal_front[-1]))

# import matplotlib.pyplot as plt
# import numpy

# front = numpy.array([ind.fitness.values for ind in pop])
# optimal_front = numpy.array(optimal_front)
# plt.scatter(optimal_front[:,0], optimal_front[:,1], c="r")
# plt.scatter(front[:,0], front[:,1], c="b")
# plt.axis("tight")
# plt.show()

0 comments on commit 0501efa

Please sign in to comment.