-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add an example of regular hypervolume-base algorithm
This algorithm illustrates the use of the “fit_attr” parameters on selection methods.
- Loading branch information
Showing
1 changed file
with
192 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,192 @@ | ||
# This file is part of DEAP. | ||
# | ||
# DEAP is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU Lesser General Public License as | ||
# published by the Free Software Foundation, either version 3 of | ||
# the License, or (at your option) any later version. | ||
# | ||
# DEAP is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU Lesser General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU Lesser General Public | ||
# License along with DEAP. If not, see <http://www.gnu.org/licenses/>. | ||
|
||
# Regular Hypervolume-based Algorithm (greedy version) | ||
|
||
import array | ||
import random | ||
import json | ||
|
||
import numpy | ||
|
||
from math import sqrt | ||
|
||
from deap import algorithms | ||
from deap import base | ||
from deap import benchmarks | ||
from deap.benchmarks.tools import diversity, convergence, hypervolume | ||
from deap.tools.indicator import hv | ||
from deap import creator | ||
from deap import tools | ||
|
||
|
||
creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0)) | ||
# Hypervolume contribution | ||
creator.create("FitnessHV", base.Fitness, weights=(1.0,)) | ||
creator.create("Individual", array.array, typecode='d', | ||
fitness=creator.FitnessMin, fitness_hv=creator.FitnessHV) | ||
|
||
toolbox = base.Toolbox() | ||
|
||
# Problem definition | ||
# Functions zdt1, zdt2, zdt3, zdt6 have bounds [0, 1] | ||
BOUND_LOW, BOUND_UP = 0.0, 1.0 | ||
|
||
# Functions zdt4 has bounds x1 = [0, 1], xn = [-5, 5], with n = 2, ..., 10 | ||
# BOUND_LOW, BOUND_UP = [0.0] + [-5.0]*9, [1.0] + [5.0]*9 | ||
|
||
# Functions zdt1, zdt2, zdt3 have 30 dimensions, zdt4 and zdt6 have 10 | ||
NDIM = 30 | ||
|
||
def uniform(low, up, size=None): | ||
try: | ||
return [random.uniform(a, b) for a, b in zip(low, up)] | ||
except TypeError: | ||
return [random.uniform(a, b) for a, b in zip([low] * size, [up] * size)] | ||
|
||
|
||
def hypervolume_contrib(front, **kargs): | ||
"""Returns the hypervolume contribution of each individual. The provided | ||
*front* should be a set of non-dominated individuals having each a | ||
:attr:`fitness` attribute. | ||
""" | ||
# Must use wvalues * -1 since hypervolume use implicit minimization | ||
# And minimization in deap use max on -obj | ||
wobj = numpy.array([ind.fitness.wvalues for ind in front]) * -1 | ||
ref = kargs.get("ref", None) | ||
if ref is None: | ||
ref = numpy.max(wobj, axis=0) + 1 | ||
|
||
total_hv = hv.hypervolume(wobj, ref) | ||
|
||
def contribution(i): | ||
# The contribution of point p_i in point set P | ||
# is the hypervolume of P without p_i | ||
return total_hv - hv.hypervolume(numpy.concatenate((wobj[:i], wobj[i+1:])), ref) | ||
|
||
# Parallelization note: Cannot pickle local function | ||
return map(contribution, range(len(front))) | ||
|
||
|
||
toolbox.register("attr_float", uniform, BOUND_LOW, BOUND_UP, NDIM) | ||
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.attr_float) | ||
toolbox.register("population", tools.initRepeat, list, toolbox.individual) | ||
|
||
toolbox.register("evaluate", benchmarks.zdt1) | ||
toolbox.register("mate", tools.cxSimulatedBinaryBounded, low=BOUND_LOW, up=BOUND_UP, eta=20.0) | ||
toolbox.register("mutate", tools.mutPolynomialBounded, low=BOUND_LOW, up=BOUND_UP, eta=20.0, indpb=1.0/NDIM) | ||
toolbox.register("sort", tools.sortLogNondominated) | ||
# Selection is based on HV fitness | ||
toolbox.register("select", tools.selBest, fit_attr="fitness_hv") | ||
|
||
def main(seed=None): | ||
random.seed(seed) | ||
|
||
NGEN = 250 | ||
MU = 100 | ||
CXPB = 0.9 | ||
|
||
stats = tools.Statistics(lambda ind: ind.fitness.values) | ||
# stats.register("avg", numpy.mean, axis=0) | ||
# stats.register("std", numpy.std, axis=0) | ||
stats.register("min", numpy.min, axis=0) | ||
stats.register("max", numpy.max, axis=0) | ||
|
||
logbook = tools.Logbook() | ||
logbook.header = "gen", "evals", "std", "min", "avg", "max" | ||
|
||
pop = toolbox.population(n=MU) | ||
|
||
# Evaluate the individuals with an invalid fitness | ||
invalid_ind = [ind for ind in pop if not ind.fitness.valid] | ||
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) | ||
for ind, fit in zip(invalid_ind, fitnesses): | ||
ind.fitness.values = fit | ||
|
||
record = stats.compile(pop) | ||
logbook.record(gen=0, evals=len(invalid_ind), **record) | ||
print(logbook.stream) | ||
|
||
# Begin the generational process | ||
for gen in range(1, NGEN): | ||
# Vary the population | ||
offspring = tools.selRandom(pop, len(pop)) | ||
offspring = [toolbox.clone(ind) for ind in offspring] | ||
|
||
for ind1, ind2 in zip(offspring[::2], offspring[1::2]): | ||
if random.random() <= CXPB: | ||
toolbox.mate(ind1, ind2) | ||
|
||
toolbox.mutate(ind1) | ||
toolbox.mutate(ind2) | ||
del ind1.fitness.values, ind2.fitness.values | ||
|
||
# Evaluate the individuals with an invalid fitness | ||
invalid_ind = [ind for ind in offspring if not ind.fitness.valid] | ||
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) | ||
for ind, fit in zip(invalid_ind, fitnesses): | ||
ind.fitness.values = fit | ||
|
||
# Select the next generation population | ||
pop = pop + offspring | ||
fronts = toolbox.sort(pop, len(pop)) | ||
chosen = [] | ||
for i, front in enumerate(fronts): | ||
# Move is front to chosen population til it is almost full | ||
if len(chosen) + len(front) <= MU: | ||
chosen.extend(front) | ||
else: | ||
# Assign hypervolume contribution to individuals of front that | ||
# cannot be completely move over to chosen individuals | ||
fitness_hv = hypervolume_contrib(front) | ||
for ind, fit_hv in zip(front, fitness_hv): | ||
ind.fitness_hv.values = (fit_hv,) | ||
# Fill chosen with best indiviuals from inspect front | ||
# (based on hypervolume contribution) | ||
chosen.extend(toolbox.select(front, MU - len(chosen))) | ||
break | ||
|
||
pop = chosen | ||
|
||
record = stats.compile(pop) | ||
logbook.record(gen=gen, evals=len(invalid_ind), **record) | ||
print(logbook.stream) | ||
|
||
print("Final population hypervolume is %f" % hypervolume(pop, [11.0, 11.0])) | ||
|
||
return pop, logbook | ||
|
||
if __name__ == "__main__": | ||
# with open("pareto_front/zdt1_front.json") as optimal_front_data: | ||
# optimal_front = json.load(optimal_front_data) | ||
# Use 500 of the 1000 points in the json file | ||
# optimal_front = sorted(optimal_front[i] for i in range(0, len(optimal_front), 2)) | ||
|
||
pop, stats = main() | ||
# pop.sort(key=lambda x: x.fitness.values) | ||
|
||
# print(stats) | ||
# print("Convergence: ", convergence(pop, optimal_front)) | ||
# print("Diversity: ", diversity(pop, optimal_front[0], optimal_front[-1])) | ||
|
||
# import matplotlib.pyplot as plt | ||
# import numpy | ||
|
||
# front = numpy.array([ind.fitness.values for ind in pop]) | ||
# optimal_front = numpy.array(optimal_front) | ||
# plt.scatter(optimal_front[:,0], optimal_front[:,1], c="r") | ||
# plt.scatter(front[:,0], front[:,1], c="b") | ||
# plt.axis("tight") | ||
# plt.show() |