forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add kvstore test with 4 gpus at tests/nightly
- Loading branch information
Showing
2 changed files
with
73 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
#!/usr/bin/env python | ||
import sys | ||
sys.path.insert(0, "../../python/") | ||
import mxnet as mx | ||
import numpy as np | ||
|
||
keys = [3, 5, 7] | ||
# let the last shape exceed MXNET_KVSTORE_BIGARRAY_BOUND | ||
shapes = [(4, 4), (100, 100), (2000, 2000)]; | ||
|
||
lr = .1 | ||
nworker = 4 | ||
nrepeat = 10 | ||
|
||
## generate data | ||
data = [[[np.random.random(s)*2-1 for i in range(nworker)] for s in shapes] for j in range(nrepeat)] | ||
|
||
## individual key interface | ||
def test_kvstore(kv_type): | ||
print kv_type | ||
kv = mx.kv.create(kv_type) | ||
kv.set_optimizer(mx.optimizer.create('test', lr)) | ||
for k, s in zip(keys, shapes): | ||
kv.init(k, mx.nd.zeros(s)) | ||
|
||
res = [np.zeros(s) for s in shapes] | ||
for i in range(nrepeat): | ||
for j in range(len(keys)): | ||
kv.push(keys[j], [mx.nd.array( | ||
data[i][j][g], mx.gpu(g)) for g in range(nworker)]) | ||
|
||
res = [a + b * lr for a, b in zip(res, [sum(d) for d in data[i]])] | ||
for j in range(len(keys)): | ||
out = [mx.nd.zeros(shapes[j], mx.gpu(g)) for g in range(nworker)] | ||
kv.pull(keys[j], out=out) | ||
err = [np.sum(np.abs(o.asnumpy() - res[j])) for o in out] | ||
err = sum(err) / np.sum(np.abs(res[j])) | ||
assert(err < 1e-6), (err, shapes[j]) | ||
|
||
test_kvstore('local_update_cpu') | ||
test_kvstore('local_allreduce_cpu') | ||
test_kvstore('local_allreduce_device') | ||
|
||
## group keys interface | ||
def test_group_kvstore(kv_type): | ||
print kv_type | ||
kv = mx.kv.create(kv_type) | ||
kv.set_optimizer(mx.optimizer.create('test', lr)) | ||
kv.init(keys, [mx.nd.zeros(s) for s in shapes]) | ||
res = [np.zeros(s) for s in shapes] | ||
out = [[mx.nd.zeros(s, mx.gpu(g)) for g in range(nworker)] for s in shapes] | ||
for i in range(nrepeat): | ||
kv.push(keys, [[ | ||
mx.nd.array(data[i][j][g], mx.gpu(g)) for g in range(nworker)] | ||
for j in range(len(keys))]) | ||
|
||
kv.pull(keys, out=out) | ||
res = [a + b * lr for a, b in zip(res, [sum(d) for d in data[i]])] | ||
for a, b in zip(res, out): | ||
err = [np.sum(np.abs(o.asnumpy() - a)) for o in b] | ||
err = sum(err) / np.sum(np.abs(a)) | ||
assert(err < 1e-6), (err, a.shape) | ||
|
||
test_group_kvstore('local_update_cpu') | ||
test_group_kvstore('local_allreduce_cpu') | ||
test_group_kvstore('local_allreduce_device') |