Skip to content

Commit

Permalink
DOC: revert gh10540, removing mtrand (scipy#11396)
Browse files Browse the repository at this point in the history
DOC: revert gh10540, numpy intersphinx update
  • Loading branch information
andyfaff authored Jan 26, 2020
1 parent 89d5349 commit 04c59ef
Show file tree
Hide file tree
Showing 7 changed files with 14 additions and 14 deletions.
2 changes: 1 addition & 1 deletion doc/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -325,7 +325,7 @@
# -----------------------------------------------------------------------------
intersphinx_mapping = {
'python': ('https://docs.python.org/dev', None),
'numpy': ('https://docs.scipy.org/doc/numpy', None),
'numpy': ('https://numpy.org/devdocs', None),
'matplotlib': ('https://matplotlib.org', None),
'asv': ('https://asv.readthedocs.io/en/stable/', None),
}
Expand Down
2 changes: 1 addition & 1 deletion doc/source/tutorial/stats.rst
Original file line number Diff line number Diff line change
Expand Up @@ -169,7 +169,7 @@ you can explicitly seed a global variable

Relying on a global state is not recommended, though. A better way is to use
the `random_state` parameter, which accepts an instance of
`numpy.random.mtrand.RandomState` class, or an integer, which is then used to
`numpy.random.RandomState` class, or an integer, which is then used to
seed an internal ``RandomState`` object:

>>> norm.rvs(size=5, random_state=1234)
Expand Down
4 changes: 2 additions & 2 deletions scipy/linalg/_sketches.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ def cwt_matrix(n_rows, n_columns, seed=None):
Number of rows of S
n_columns: int
Number of columns of S
seed : None or int or `numpy.random.mtrand.RandomState` instance, optional
seed : None or int or `numpy.random.RandomState` instance, optional
This parameter defines the ``RandomState`` object to use for drawing
random variates.
If None (or ``np.random``), the global ``np.random`` state is used.
Expand Down Expand Up @@ -72,7 +72,7 @@ def clarkson_woodruff_transform(input_matrix, sketch_size, seed=None):
Input matrix, of shape ``(n, d)``.
sketch_size: int
Number of rows for the sketch.
seed : None or int or `numpy.random.mtrand.RandomState` instance, optional
seed : None or int or `numpy.random.RandomState` instance, optional
This parameter defines the ``RandomState`` object to use for drawing
random variates.
If None (or ``np.random``), the global ``np.random`` state is used.
Expand Down
2 changes: 1 addition & 1 deletion scipy/linalg/interpolative.py
Original file line number Diff line number Diff line change
Expand Up @@ -417,7 +417,7 @@ def seed(seed=None):
the generator.
If the value is an integer, the internal state is obtained
from `numpy.random.mtrand.RandomState` (MT19937) with the integer
from `numpy.random.RandomState` (MT19937) with the integer
used as the initial seed.
If `seed` is omitted (None), ``numpy.random.rand`` is used to
Expand Down
12 changes: 6 additions & 6 deletions scipy/optimize/_dual_annealing.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,8 +40,8 @@ class VisitingDistribution(object):
makes the algorithm jump to a more distant region.
The value range is (0, 3]. It's value is fixed for the life of the
object.
rand_state : `~numpy.random.mtrand.RandomState` object
A `~numpy.random.mtrand.RandomState` object for using the current state
rand_state : `~numpy.random.RandomState` object
A `~numpy.random.RandomState` object for using the current state
of the created random generator container.
"""
TAIL_LIMIT = 1.e8
Expand Down Expand Up @@ -228,8 +228,8 @@ class StrategyChain(object):
Instance of `ObjectiveFunWrapper` class.
minimizer_wrapper: LocalSearchWrapper
Instance of `LocalSearchWrapper` class.
rand_state : `~numpy.random.mtrand.RandomState` object
A `~numpy.random.mtrand.RandomState` object for using the current state
rand_state : `~numpy.random.RandomState` object
A `~numpy.random.RandomState` object for using the current state
of the created random generator container.
energy_state: EnergyState
Instance of `EnergyState` class.
Expand Down Expand Up @@ -476,8 +476,8 @@ def dual_annealing(func, bounds, args=(), maxiter=1000,
algorithm is in the middle of a local search, this number will be
exceeded, the algorithm will stop just after the local search is
done. Default value is 1e7.
seed : {int or `~numpy.random.mtrand.RandomState` instance}, optional
If `seed` is not specified the `~numpy.random.mtrand.RandomState`
seed : {int or `~numpy.random.RandomState` instance}, optional
If `seed` is not specified the `~numpy.random.RandomState`
singleton is used.
If `seed` is an int, a new ``RandomState`` instance is used,
seeded with `seed`.
Expand Down
2 changes: 1 addition & 1 deletion scipy/spatial/distance.py
Original file line number Diff line number Diff line change
Expand Up @@ -366,7 +366,7 @@ def directed_hausdorff(u, v, seed=0):
v : (O,N) ndarray
Input array.
seed : int or None
Local `numpy.random.mtrand.RandomState` seed. Default is 0, a random
Local `numpy.random.RandomState` seed. Default is 0, a random
shuffling of u and v that guarantees reproducibility.
Returns
Expand Down
4 changes: 2 additions & 2 deletions scipy/stats/_continuous_distns.py
Original file line number Diff line number Diff line change
Expand Up @@ -1561,7 +1561,7 @@ class exponweib_gen(rv_continuous):
See Also
--------
weibull_min, numpy.random.mtrand.RandomState.weibull
weibull_min, numpy.random.RandomState.weibull
Notes
-----
Expand Down Expand Up @@ -1938,7 +1938,7 @@ class weibull_min_gen(rv_continuous):
See Also
--------
weibull_max, numpy.random.mtrand.RandomState.weibull, exponweib
weibull_max, numpy.random.RandomState.weibull, exponweib
Notes
-----
Expand Down

0 comments on commit 04c59ef

Please sign in to comment.