Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
lolemacs authored Feb 26, 2019
1 parent f190348 commit 6e44a53
Showing 1 changed file with 2 additions and 2 deletions.
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -75,15 +75,15 @@ Make sure not to apply weight decay to the coefficients for best results (check
To train a SWRN-28-10-6 with cutout on CIFAR-10, do:

```
python main.py data --dataset cifar10 --arch swrn --depth 28 --wide 10 --bank_size 6 --cutout --job-id swrn28-10-6
python main.py data --dataset cifar10 --arch swrn --depth 28 --wide 10 --bank_size 6 --cutout --job-id swrn28-10-6
```

By default the learning rate will be decayed by 5 at epochs 60, 120 and 160 (out of a total of 200 epochs), and a weight decay of 0.0005 is applied. These settings can be specified through command-line arguments (schedule, gammas, decay, etc).

Also by default a 90/10 split will be used to split the original training set into train/val. When your model is ready to be evaluated on the test set, you can use the --evaluate option and point to the saved model, as in:

```
python main.py data --dataset cifar10 --arch swrn --depth 28 --wide 10 --bank_size 6 --evaluate --resume snapshots/swrn28-10-6/model_best.pth.tar
python main.py data --dataset cifar10 --arch swrn --depth 28 --wide 10 --bank_size 6 --evaluate --resume snapshots/swrn28-10-6/model_best.pth.tar
```


Expand Down

0 comments on commit 6e44a53

Please sign in to comment.