Skip to content

ML3DOP: A Multi-Camera and LiDAR Dataset for 3D Occupancy Perception

License

Notifications You must be signed in to change notification settings

lvchuandong/ML3DOP

Repository files navigation

ML3DOP: A Multi-Camera and LiDAR Dataset for 3D Occupancy Perception

News

1. SENSOR SETUP

1.1 Acquisition Platform

Physical drawings and schematics of the ground robot is given below.

Figure 1. The WHEELTEC ground robot equipped with a lidar and four RGB cameras. The directions of the sensors are marked in different colors, red for X, green for Y and blue for Z. The camera id are named 0~3 from front_right to front_left successively.

1.2 Sensor parameters

All the sensors and their most important parameters are listed as below:

  • LIDAR LeiShen Intelligent C16-151B, 360 Horizontal Field of View (FOV), -15 to +15 Vertical FOV, 20Hz, Max Range 200 m, Range Resolution 3 cm, Horizontal Angular Resolution 0.36°.

  • RGB Camera HIKVISION U64, 1280*720, 81 H-FOV, 90 D-FOV, 30 Hz

2. DATASET SEQUENCES

We make public ALL THE SEQUENCES with their imgs captured from 4 cameras and lidar_txt/lidar_pcd files now.

All the sequences are acquired in Shandong University, Qingdao, including indoor and outdoor scenes. Dataset link is: ML3DOP

Figure 2. An image frame acquired by four cameras.

Figure 3. A lidar frame acquired by lidar.

An overview of ML3DOP is given in the tables below:

Indoor

Scenario Number Size of imgs/GB Size of lidar_txt/GB Size of lidar_pcd/GB Duration/s
Canteen 3 17.4 13.7 27.3 747
Fengyu 1 8.3 5.1 9.5 261
Huiwen 2 3.3 5.7 10.6 272
Library 1 5.1 4.5 11.9 254
Museum 2 10.2 13.4 32 669
N5 4 18.2 26.6 51.8 1295
N7 2 3.7 5.9 11.2 271
Shoppingmall 2 5.2 6.2 11.7 312
Zhensheng 1 7.3 11.6 21.7 580
TOTAL 18 78.7 92.7 187.7 4661

Outdoor

Scenario Number Size of imgs/GB Size of lidar_txt/GB Size of lidar_pcd/GB Duration/s
Between_zhensheng_and_huagang 1 6.0 4.7 8.8 186
Dark 1 3.2 3.2 6.0 155
Dark_library 1 15.1 12.5 23.7 739
Fengyu_north 1 16.4 6.8 13.0 423
Huagang-zhensheng_west 1 28.8 13.7 25.8 794
Museum 1 20.0 8.4 17.7 788
N1_west-N5_north 1 28.9 14.8 27.8 837
N5_north-N1_west 1 26.3 12.2 22.7 661
Playground_south 1 3.6 2.6 4.9 143
Zhensheng_north 1 20.2 10.1 19.2 595
Zhensheng_north-N1_north 1 5.5 2.4 4.7 155
TOTAL 11 174.0 91.4 174.3 5476

Our model 3DOPFormer has currently only been trained and tested on indoor scene dataset, the division of the indoor scene dataset is as follows:

train val test
canteen_floor_1 huiwen_floor_1 N7_floor_1
canteen_floor_2 N5_floor_1_north N5_floor_1_south
canteen_floor_3
fengyu
huiwen_floor_2
library_floor_2
museum_floor_2
museum_floor_4
N5_floor_1
N5_floor_2
N7_floor_2
shoppingmall_floor_1
shoppingmall_floor_2
zhensheng

2.1 Indoors

Sequence name Collection date Size of imgs/GB Size of lidar_txt/GB Size of lidar_pcd/GB Duration/s
indoor_canteen_floor_1 2023-03-07 6.1 4.8 10.6 254
indoor_canteen_floor_2 2023-03-07 5.8 4.0 7.5 219
indoor_canteen_floor_3 2023-03-07 5.5 4.9 9.2 274
indoor_fengyu 2023-03-09 8.3 5.1 9.5 261
indoor_huiwen_floor_1 2023-03-08 1.5 2.8 5.2 129
indoor_huiwen_floor_2 2023-03-08 1.8 2.9 5.4 143
indoor_library_floor_2 2023-03-06 5.1 4.5 11.9 254
indoor_museum_floor_2 2023-03-08 4.1 5.4 13.7 266
indoor_museum_floor_4 2023-03-08 6.1 8.0 18.3 403
indoor_N5_floor_1 2023-03-06 7.4 12.1 23.2 596
indoor_N5_floor_2 2023-03-06 7.7 11.6 22.3 577
indoor_N5_floor_1_north 2022-12-04 1.6 1.6 2.9 59
indoor_N5_floor_1_south 2022-12-04 1.5 1.3 3.4 63
indoor_N7_floor_1 2023-03-07 1.5 2.6 5.0 112
indoor_N7_floor_2 2023-03-07 2.2 3.3 6.2 159
indoor_shoppingmall_floor_1 2023-03-07 2.7 2.7 5.2 137
indoor_shoppingmall_floor_2 2023-03-07 2.5 3.5 6.5 175
indoor_zhensheng 2023-03-06 7.3 11.6 21.7 580

2.2 Outdoors

Sequence name Collection date Size of imgs/GB Size of lidar_txt/GB Size of lidar_pcd/GB Duration/s
outdoor_between_zhensheng_and_huagang 2023-03-07 6.0 4.7 8.8 186
outdoor_dark 2023-03-07 3.2 3.2 6.0 155
outdoor_dark_library 2023-03-08 15.1 12.5 23.7 739
outdoor_fengyu_north 2023-03-09 16.4 6.8 13.0 423
outdoor_huagang-zhensheng_west 2023-03-09 28.8 13.7 25.8 794
outdoor_museum 2023-03-07 20.0 8.4 17.7 788
outdoor_N1_west-N5_north 2023-03-06 28.9 14.8 27.8 837
outdoor_N5_north-N1_west 2023-03-06 26.3 12.2 22.7 661
outdoor_playground_south 2023-03-07 3.6 2.6 4.9 143
outdoor_zhensheng_north 2023-03-06 20.2 10.1 19.2 595
outdoor_zhensheng_north-N1_north 2023-03-07 5.5 2.4 4.7 155

3. DEVELOPMENT TOOLKITS

Dependencies

  • python=3.9.5
  • numpy=1.20.2
  • pip=21.1.1
  • tqdm=4.61.2
  • pip:
    • pyyaml==6.0
    • dpkt==1.9.7.2

3.1 Extracting lidar data frame from pcap files

As we use the LSC16-[Client] software provided by LeiShen Intelligent Company to acquire lidar data on Windows platform in the form of pcap file, so that we need to extract lidar data frame from these pcap files.

Firstly, we filter out data packages using Wireshark software due to the presence of both data and device packages in the pcap file. The filtered pcap files are provided in our dataset: lidar_pcap_indoor.zip and lidar_pcap_outdoor.zip.

Then, git clone this project, check the parameters in params.yaml, if on Linux platform, run:

bash run_indoor.sh

or

bash run_outdoor.sh

You can change the --path and --out-dir parameter in above .sh files according to the actual situation.

If on Windows platform, run:

python main.py --path your_path --out-dir your_out-dir --config=.\params.yaml

After this operation, we get TXT files/PCD files named as index and time (Beijing).

Output

Full 360° frame store in a file.
All TXT files have the following fields:
Timestamp, Laser_ID, X [m], Y [m], Z [m], Intensity [0-255], Vertical_angle [Angle system], Horizontal_angle [Angle system], Distance [m]

All PCD files have the following fields:
X [m], Y [m], Z [m], Intensity [0-255]

The TXT files and PCD files are provided in our dataset: lidar_indoor_txt.zip, lidar_outdoor_txt.zip, lidar_indoor_pcd.zip, lidar_outdoor_pcd.zip.

Note

This part is based on https://github.com/hitxing/Lidar-data-decode/ which supports LSC32. Actually, this project can support any lidar as long as you change the parameters follow the corresponding technical manual.

3.2 Generating data_all.pkl

For the convenience of using this dataset, we has generated a .pkl file, which stores a data_dict. In this data_dict, imgs_path are classified by img0_key and camera_id, lidar_path are classified by img0_key (img0_key is the imgs_path of camera 0).

If on Linux platform, run:

bash data_pkl.sh

You can change the --imgs_path and --lidar_path parameter in above .sh files according to the actual situation.

If on Windows platform, run:

python data_pkl.py --imgs_path your_imgs_path --lidar_path your_lidar_path

After this operation, we get data_all.pkl. This file is provided in our dataset: data_pkl.zip.

Note

Before running, you need to make sure the machine's time zone is Beijing time zone to get the correct timestamp.

3.3 Calibration

Place the calibration board in front of the camera, we record calibration videos for each camera, then use the Autoware calibration toolbox in the ROS environment to calibrate four cameras separately. Calibration files are provided in our dataset: calibration.zip.

4. LICENSE

This work is licensed under MIT license, which is provided for academic purpose as an international license.

About

ML3DOP: A Multi-Camera and LiDAR Dataset for 3D Occupancy Perception

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published