Skip to content

lwCVer/RFD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Robust Feature Downsampling Module for Remote Sensing Visual Tasks [TGRS 2023]

This is the official Pytorch/Pytorch implementation of the paper:

A Robust Feature Downsampling Module for Remote Sensing Visual Tasks
Wei Lu; Si-Bao Chen; Jin Tang; Chris H. Q. Ding; Bin Luo
IEEE Transactions on Geoscience and Remote Sensing (TGRS), 2023


We propose a new and universal downsampling module named robust feature downsampling (RFD).

Image Classification

If you want to replace the downsampling module in your network with the RFD, you can do the following:

replace:
self.conv_down = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1)
to 
self.SRFD = RFD.SRFD(in_channels, out_channels) # original size to 4x downsampling layer
or
self.DRFD = RFD.DRFD(in_channels, out_channels) # Deep feature downsampling

Image Classification

1. Dependency Setup

Create a new conda virtual environment

conda create -n RFD python=3.7 -y
conda activate RFD
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch

Clone this repo and install the required packages:

git clone https://github.com/lwCVer/RFD
cd RFD/
pip install -r requirements.txt

2. Dataset Preparation

You can download our already sliced NWPU-RESISC45 dataset, or download the NWPU-RESISC45 classification dataset from the official document and structure the data as follows:

/path/to/NWPU-RESISC45/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class2/
      img4.jpeg

3. Training

Swin V2 Tiny training on RESISC45 (dataset path need to be changed in train.py):

python train.py 

To train other models, train.py need to be changed.

4. Pre-trained Models on NWPU-RESISC45 (initial / +RFD)

name (initial / +RFD) type #params (M) FLOPs (G) Throughput (fps) Top-1 acc model
GFNet-H Tiny FFT 14.60 / 15.68 2.05 / 2.43 2693 / 2128 92.27 / 94.76 initial / +RFD
GFNet-H Small FFT 31.43 / 33.05 4.59 / 5.34 2405 / 2466 93.40 / 95.11 initial / +RFD
GFNet-H Base FFT 53.01 / 55.43 8.53 / 9.28 2098 / 1886 94.17 / 95.46 initial / +RFD
AS-MLP Tiny MLP 27.55 / 29.96 4.39 / 5.14 1505 / 1571 95.37 / 96.05 initial / +RFD
AS-MLP Small MLP 48.86 / 51.27 8.57 / 9.32 1073 / 1019 95.27 / 96.00 initial / +RFD
AS-MLP Base MLP 86.77 / 91.05 15.2 / 16.44 861 / 830 95.63 / 95.94 initial / +RFD
Swin Tiny Transformer 27.55 / 29.97 4.36 / 5.11 2469 / 2313 93.52 / 96.10 initial / +RFD
Swin Small Transformer 48.87 / 51.28 8.52 / 9.27 1995 / 1762 93.37 / 96.16 initial / +RFD
Swin Base Transformer 86.79 / 91.06 15.14 / 16.37 1975 / 1734 93.19 / 96.24 initial / +RFD
CSWin Tiny Transformer 21.83 / 22.05 4.08 / 4.35 1303 / 1127 93.05 / 96.11 initial / +RFD
CSWin Small Transformer 34.15 / 34.37 6.40 / 6.67 682 / 579 93.56 / 96.11 initial / +RFD
CSWin Base Transformer 76.65 / 77.12 14.36 / 14.87 481 / 406 94.49 / 96.29 initial / +RFD
Swin V2 Tiny Transformer 27.61 / 30.03 3.33 / 4.08 2009 / 1987 94.65 / 96.46 initial / +RFD
Swin V2 Small Transformer 48.99 / 51.41 6.47 / 7.22 1273 / 827 95.22 / 96.84 initial / +RFD
Swin V2 Base Transformer 86.94 / 91.22 11.48 / 12.71 1104 / 682 95.63 / 96.61 initial / +RFD
Mixformer Tiny Hybrid 5.10 / 5.25 0.39 / 0.44 1287 / 1192 94.87 / 95.30 initial / +RFD
Mixformer Small Hybrid 9.89 / 10.17 0.88 / 0.95 1018 / 975 95.41 / 96.03 initial / +RFD
Mixformer Base Hybrid 34.80 / 35.85 3.44 / 3.56 830 / 722 95.76 / 96.37 initial / +RFD
ConvNeXt Tiny CNN 28.85 / 30.27 4.47 / 5.22 3109 / 2566 93.70 / 95.48 initial / +RFD
ConvNeXt Small CNN 49.49 / 51.90 8.70 / 9.45 2734 / 2478 93.90 / 95.48 initial / +RFD
ConvNeXt Base CNN 87.61 / 91.89 15.38 / 16.61 2726 / 2520 95.02 / 96.13 initial / +RFD

Acknowledgement

This repository is built using the timm, ConvNeXt, mmdetection and mmsegmentation repositories.

If you have any questions about this work, you can contact me. QQ: 2858191255; Email: [email protected].

Your star is the power that keeps us updating github.

Citation

If you find this repository helpful, please consider citing:

@article{lu2023robust,
  title={A Robust Feature Downsampling Module for Remote Sensing Visual Tasks},
  author={Lu, Wei and Chen, Si-Bao and Tang, Jin and Ding, Chris HQ and Luo, Bin},
  journal={IEEE Transactions on Geoscience and Remote Sensing},
  volume={61},
  pages={1--12},
  year={2023},
  publisher={IEEE}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages