forked from CarperAI/trlx
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add loss masking to SFT (both from prompt & padding tokens) * Add Alpaca example
- Loading branch information
Showing
6 changed files
with
167 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
## Alpaca | ||
|
||
Finetune a model on [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) | ||
```bash | ||
python sft_alpaca.py --model_name EleutherAI/gpt-j-6B --dataset tatsu-lab/alpaca | ||
``` | ||
|
||
Finetune a model on [Alpaca-Cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned) | ||
```bash | ||
python sft_alpaca.py --model_name EleutherAI/gpt-j-6B --dataset yahma/alpaca-cleaned | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
import json | ||
import os | ||
from argparse import ArgumentParser | ||
from typing import Dict, List | ||
|
||
from datasets import load_dataset | ||
from transformers import pipeline | ||
|
||
import trlx | ||
from trlx.data.default_configs import TRLConfig, default_sft_config | ||
|
||
|
||
def get_positive_score(scores): | ||
"Extract value associated with a positive sentiment from pipeline's output" | ||
return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"] | ||
|
||
|
||
def preprocess(instruction: str, input: str, output: str): | ||
"""Build Alpaca prompt and output from instruction and input/output examples""" | ||
if input: | ||
prefix = ( | ||
"Below is an instruction that describes a task, paired with an input that provides further context. " | ||
"Write a response that appropriately completes the request." | ||
) | ||
prompt = f"{prefix}\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" | ||
return [prompt, output] | ||
else: | ||
prefix = ( | ||
"Below is an instruction that describes a task. Write a response that appropriately completes the request." | ||
) | ||
prompt = f"{prefix}\n\n### Instruction:\n{instruction}\n\n### Response:\n" | ||
return [prompt, output] | ||
|
||
|
||
def main(hparams={}, model_name="EleutherAI/gpt-j-6B", dataset="tatsu-lab/alpaca"): | ||
config = default_sft_config() | ||
config = config.evolve( | ||
train=dict( | ||
total_steps=2400, | ||
batch_size=4, | ||
seq_length=1024, | ||
), | ||
model=dict( | ||
model_path=model_name, | ||
), | ||
tokenizer=dict( | ||
tokenizer_path=model_name, | ||
), | ||
optimizer=dict(kwargs=dict(lr=2e-5)), | ||
scheduler=dict(kwargs=dict(eta_min=2e-5)), | ||
method=dict( | ||
gen_kwargs=dict( | ||
max_new_tokens=256, | ||
) | ||
), | ||
) | ||
|
||
# Merge sweep config with default config if given | ||
config = TRLConfig.update(config.to_dict(), hparams) | ||
|
||
# alpaca = load_dataset("tatsu-lab/alpaca", split="train") | ||
alpaca = load_dataset(dataset, split="train") | ||
alpaca = [preprocess(x["instruction"], x["input"], x["output"]) for x in alpaca] | ||
|
||
sentiment_fn = pipeline( | ||
"sentiment-analysis", | ||
"lvwerra/distilbert-imdb", | ||
top_k=2, | ||
truncation=True, | ||
batch_size=256, | ||
device=0 if int(os.environ.get("LOCAL_RANK", 0)) == 0 else -1, | ||
) | ||
|
||
def metric_fn(samples: List[str], prompts: List[str], outputs: List[str]) -> Dict[str, List[float]]: | ||
sentiments = list(map(get_positive_score, sentiment_fn(outputs))) | ||
return {"sentiments": sentiments} | ||
|
||
imdb = load_dataset("imdb", split="test") | ||
bad_reviews = imdb.filter(lambda sample: sample["label"] == 0).select(range(256)) | ||
zs_rewrite = [preprocess("Rewrite the input into a positive review.", x["text"][:1024], "")[0] for x in bad_reviews] | ||
|
||
trainer = trlx.train( | ||
samples=alpaca, | ||
eval_prompts=zs_rewrite, | ||
metric_fn=metric_fn, | ||
config=config, | ||
) | ||
|
||
slug = f"{model_name.split('/')[-1]}-{dataset.split('/')[-1]}" | ||
trainer.save_pretrained(f"{slug}-sft") | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = ArgumentParser() | ||
parser.add_argument("override_hparams", type=str, default="{}", nargs="?") | ||
parser.add_argument("--model_name", type=str, default="EleutherAI/gpt-j-6B") | ||
parser.add_argument("--dataset", type=str, default="tatsu-lab/alpaca") | ||
|
||
args = parser.parse_args() | ||
hparams = json.loads(args.override_hparams) | ||
|
||
main(hparams, args.model_name, args.dataset) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters