-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* partition a KG. * get tid. * support builtin * fix a minor bug. Co-authored-by: Chao Ma <[email protected]>
- Loading branch information
Showing
2 changed files
with
55 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
from dataloader import get_dataset | ||
import scipy as sp | ||
import numpy as np | ||
import argparse | ||
import signal | ||
import dgl | ||
from dgl import backend as F | ||
from dgl.data.utils import load_graphs, save_graphs | ||
|
||
def main(): | ||
parser = argparse.ArgumentParser(description='Partition a knowledge graph') | ||
parser.add_argument('--data_path', type=str, default='data', | ||
help='root path of all dataset') | ||
parser.add_argument('--dataset', type=str, default='FB15k', | ||
help='dataset name, under data_path') | ||
parser.add_argument('--data_files', type=str, default=None, nargs='+', | ||
help='a list of data files, e.g. entity relation train valid test') | ||
parser.add_argument('--format', type=str, default='built_in', | ||
help='the format of the dataset, it can be built_in,'\ | ||
'raw_udd_{htr} and udd_{htr}') | ||
parser.add_argument('-k', '--num-parts', required=True, type=int, | ||
help='The number of partitions') | ||
args = parser.parse_args() | ||
num_parts = args.num_parts | ||
|
||
# load dataset and samplers | ||
dataset = get_dataset(args.data_path, args.dataset, args.format, args.data_files) | ||
|
||
src, etype_id, dst = dataset.train | ||
coo = sp.sparse.coo_matrix((np.ones(len(src)), (src, dst)), | ||
shape=[dataset.n_entities, dataset.n_entities]) | ||
g = dgl.DGLGraph(coo, readonly=True, sort_csr=True) | ||
g.edata['tid'] = F.tensor(etype_id, F.int64) | ||
|
||
part_dict = dgl.transform.metis_partition(g, num_parts, 1) | ||
|
||
tot_num_inner_edges = 0 | ||
for part_id in part_dict: | ||
part = part_dict[part_id] | ||
|
||
num_inner_nodes = len(np.nonzero(F.asnumpy(part.ndata['inner_node']))[0]) | ||
num_inner_edges = len(np.nonzero(F.asnumpy(part.edata['inner_edge']))[0]) | ||
print('part {} has {} nodes and {} edges. {} nodes and {} edges are inside the partition'.format( | ||
part_id, part.number_of_nodes(), part.number_of_edges(), | ||
num_inner_nodes, num_inner_edges)) | ||
tot_num_inner_edges += num_inner_edges | ||
|
||
part.copy_from_parent() | ||
save_graphs(args.data_path + '/part_' + str(part_id) + '.dgl', [part]) | ||
print('there are {} edges in the graph and {} edge cuts for {} partitions.'.format( | ||
g.number_of_edges(), g.number_of_edges() - tot_num_inner_edges, len(part_dict))) | ||
|
||
if __name__ == '__main__': | ||
main() |