Skip to content

Commit

Permalink
Updated the documentation of symbolic reachability
Browse files Browse the repository at this point in the history
  • Loading branch information
wiegerw committed Feb 16, 2021
1 parent 75d6f02 commit ebe6678
Showing 1 changed file with 69 additions and 1 deletion.
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,11 @@

\newcommand{\emptylist}{\ensuremath{[\:]}}

\newcommand{\pnot}[1]{\bar{#1}}
\newcommand{\attrsym}{\ensuremath{\textit{Attr}}}
\newcommand{\attr}[3][]{\ensuremath{\attrsym^{#1}_{#2}(#3)}}
\newcommand{\pred}{\ensuremath{\textit{pred}}}

\title{Symbolic Reachability using LDDs}
\author{Wieger Wesselink}
\date{\today}
Expand Down Expand Up @@ -340,6 +345,15 @@ \subsection{Reachability of a sparse relation}
(\hat{x}, \hat{y}) \in \hat{R}
\}
\]

\[
\textsf{relprev}(\hat{R}, y, I_r, I_w, X) =
\{
x \in X \mid y \in \textsf{relprod}(\hat{R}, x, I_r, I_w)
% y[I_r = \hat{x}] \mid \textsf{project}(y, I_w) = \hat{y} \land
% (\hat{x}, \hat{y}) \in \hat{R}
\}
\]
\end{definition}

\begin{algorithm}[h]
Expand Down Expand Up @@ -467,7 +481,7 @@ \subsubsection{Row subsumption}
\]

\[
\textsf{relprod}^\blacktriangle(\hat{R}, x, I_r, I_w) =
\textsf{relprod}^\blacktriangle(\hat{R}, x, I_r, I_w, X) =
\{
x[I_w = \hat{y}]^\blacktriangle \mid \textsf{project}(x, I_r) = \hat{x} \land
(\hat{x}, \hat{y}) \in \hat{R}
Expand Down Expand Up @@ -627,6 +641,60 @@ \subsection{PBES Reachability}
\end{tabular}
\end{center}

\newpage
\section{Zielonka}
Let $V$ be the nodes of a parity game.
For a non-empty set $U \subseteq V$ and a player $\alpha$, the
$\alpha$-attractor into $U$, denoted $\attr{\alpha}{U,V}$,
is the set of vertices for which player
$\alpha$ can force play into $U$. We define $\attr{\alpha}{U,V}$ as
$\bigcup\limits_{i \ge 0} \attr[i]{\alpha}{U,V}$,
the limit of approximations\label{def:attractor} of the
sets $\attr[n]{\alpha}{U,V}$, which are inductively defined as follows:
\[
\begin{array}{lcl}
\attr[0]{\alpha}{U, V} & = & U \\
\attr[n+1]{\alpha}{U, V} & = & \attr[n]{\alpha}{U, V} \\
& \cup & \{u \in V_{\alpha} ~|~ \exists v \in \attr[n]{\alpha}{U,V}:~ u \to v \} \\
& \cup & \{u \in V_{1 - \alpha} ~|~ \forall v \in V: u \to v \Rightarrow v \in \attr[n]{\alpha}{U, V}\} \\
\end{array}
\]
We reformulate this into
\[
\begin{array}{lcl}
\attr[0]{\alpha}{U, V} & = & U \\
\attr[n+1]{\alpha}{U, V} & = & \attr[n]{\alpha}{U, V} \\
& \cup & (V_{\alpha} \cap \pred(V, \attr[n]{\alpha}{U, V})) \\
& \cup & (V_{1 - \alpha} \cap (V \setminus \pred(V, V \setminus \attr[n]{\alpha}{U,V})) \\
\end{array}
\]
where $\pred(U, V) = \{ u \in U \mid \exists v \in V: u \rightarrow v \}$.

\begin{algorithm}[h]
\caption{Zielonka}
\label{alg:zielonka}
\begin{algorithmic}[1]
\Function{Zielonka}{$V$}
\If {$V = \emptyset$}
\State \Return {$\emptyset, \emptyset$}
\EndIf
\State $m:=\min (\{r(v)\mid v\in V\})$
\State $\alpha := m \bmod 2$
\State $U:=\{v\in V\mid r(v)=m\}$
\State $A := \attr{\alpha}{U,V}$
\State $W_{0}^{\prime },W_{1}^{\prime}:= \textsc{Zielonka}(V\setminus A)$
\If {$W_{1-\alpha }^{\prime }= \emptyset$}
\State $W_{\alpha },W_{1-\alpha }:=A\cup W_{\alpha }^{\prime},\emptyset$
\Else
\State $B := \attr{1-\alpha}{W_{1-\alpha }^{\prime }, V}$
\State $W_{0},W_{1}:=\textsc{Zielonka}(V\setminus B)$
\State $W_{1-\alpha } := W_{1-\alpha }\cup B$
\EndIf
\State \Return $W_{0},W_{1}$
\EndFunction
\end{algorithmic}
\end{algorithm}

\newpage
\bibliographystyle{plain}
\bibliography{symbolic-reachability}
Expand Down

0 comments on commit ebe6678

Please sign in to comment.