-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
24 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
# Validacion | ||
## R package to validate continuous simulation models | ||
|
||
La validación es una fase importante del proceso de simulación que permite evaluar la calidad de un modelo. | ||
Especı́ficamente en el caso de modelos de simulación continua se comparan datos u observaciones del sistema | ||
real con las predicciones generadas por el modelo. Para facilitar a los usuarios esta comparación, en este trabajo | ||
se desarrolló una librerı́a de métodos para validar modelos de simulación continua. Se incluyeron varias de las | ||
técnicas más usadas para validar modelos: desde ı́ndices simples tales como el error cuadrático medio y sus derivados | ||
(ı́ndice de Theil, ı́ndice de eficiencia, etc.) hasta métodos estadı́sticos clásicos (regresiones predicciones de modelo | ||
versus datos, pruebas t-pareadas, entre otros). Se incluyeron además métodos estadı́sticos bayesianos y basados | ||
en información que permiten discriminar entre versiones alternativas de un modelo. La librerı́a incluye además | ||
varios conjuntos de datos, ayuda y un manual para comprender mejor las diferentes técnicas y su aplicación. Fue | ||
desarrollada en el lenguaje estadı́stico R y se encuentra disponible libremente. | ||
|
||
|
||
### Abstract | ||
Validation is an important phase in simulation that helps to evaluate model’s quality. Specifically, in continuous | ||
simulation models, real data and model’s results are compared. In this paper we present a library of methods to | ||
validate continuous simulation models that facilitate this task. We included several of the most used models validation | ||
techniques: from simple index such as mean squared error and its variants (Theil statistics, model efficiency, etc.) | ||
to classical statistical methods (model vs data regressions, paired t-test and others). We also included Bayesian | ||
statistical methods and information criteria methods that allow choosing between different models. The library | ||
includes several data frames, help and a manual for better understanding of the techniques and its application. | ||
The library was developed in R language and is available. |