Skip to content
forked from AbanteAI/rawdog

Generate and auto-execute Python scripts in the cli

License

Notifications You must be signed in to change notification settings

machinegpt/rawdog

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Discord Follow

Rawdog

An CLI assistant that responds by generating and auto-executing a Python script.

rawdog-demo-4.mp4

You'll be surprised how useful this can be:

  • "How many folders in my home directory are git repos?" ... "Plot them by disk size."
  • "Give me the pd.describe() for all the csv's in this directory"
  • "What ports are currently active?" ... "What are the Google ones?" ... "Cancel those please."

Rawdog (Recursive Augmentation With Deterministic Output Generations) is a novel alternative to RAG (Retrieval Augmented Generation). Rawdog can self-select context by running scripts to print things, adding the output to the conversation, and then calling itself again.

This works for tasks like:

  • "Setup the repo per the instructions in the README"
  • "Look at all these csv's and tell me if they can be merged or not, and why."
  • "Try that again."

Please proceed with caution. This obviously has the potential to cause harm if so instructed.

Quickstart

  1. Install rawdog with pip:

    pip install rawdog-ai
    
  2. Export your api key. See Model selection for how to use other providers

    export OPENAI_API_KEY=your-api-key
    
  3. Choose a mode of interaction.

    Direct: Execute a single prompt and close

    rawdog Plot the size of all the files and directories in cwd
    

    Conversation: Initiate back-and-forth until you close. Rawdog can see its scripts and output.

    rawdog
    >>> What can I do for you? (Ctrl-C to exit)
    >>> > |
    

Optional Arguments

  • --dry-run: Print and manually approve each script before executing.

Model selection

Rawdog uses litellm for completions with 'gpt-4-turbo-preview' as the default. You can adjust the model or point it to other providers by modifying ~/.rawdog/config.yaml. Some examples:

To use gpt-3.5 turbo a minimal config is:

llm_model: gpt-3.5-turbo

To run mixtral locally with ollama a minimal config is (assuming you have ollama installed and a sufficient gpu):

llm_custom_provider: ollama
llm_model: mixtral

To run claude-2.1 set your API key:

export ANTHROPIC_API_KEY=your-api-key

and then set your config:

llm_model: claude-2.1

If you have a model running at a local endpoint (or want to change the baseurl for some other reason) you can set the llm_base_url. For instance if you have an openai compatible endpoint running at http://localhost:8000 you can set your config to:

llm_base_url: http://localhost:8000
llm_model: openai/model # So litellm knows it's an openai compatible endpoint

Litellm supports a huge number of providers including Azure, VertexAi and Huggingface. See their docs for details on what environment variables, model names and llm_custom_providers you need to use for other providers.

About

Generate and auto-execute Python scripts in the cli

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%