Skip to content

Commit

Permalink
Merge pull request tensorflow#948 from tensorflow/update-cifar10
Browse files Browse the repository at this point in the history
Updated the cifar10 model to be compatible with the latest version of TensorFlow
  • Loading branch information
nealwu authored Jan 30, 2017
2 parents a00389b + e2ecda2 commit d43335c
Show file tree
Hide file tree
Showing 3 changed files with 14 additions and 14 deletions.
16 changes: 8 additions & 8 deletions tutorials/image/cifar10/cifar10.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,8 +90,8 @@ def _activation_summary(x):
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
tf.histogram_summary(tensor_name + '/activations', x)
tf.scalar_summary(tensor_name + '/sparsity',
tf.contrib.deprecated.histogram_summary(tensor_name + '/activations', x)
tf.contrib.deprecated.scalar_summary(tensor_name + '/sparsity',
tf.nn.zero_fraction(x))


Expand Down Expand Up @@ -134,7 +134,7 @@ def _variable_with_weight_decay(name, shape, stddev, wd):
shape,
tf.truncated_normal_initializer(stddev=stddev, dtype=dtype))
if wd is not None:
weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss')
weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var

Expand Down Expand Up @@ -316,8 +316,8 @@ def _add_loss_summaries(total_loss):
for l in losses + [total_loss]:
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
tf.scalar_summary(l.op.name + ' (raw)', l)
tf.scalar_summary(l.op.name, loss_averages.average(l))
tf.contrib.deprecated.scalar_summary(l.op.name + ' (raw)', l)
tf.contrib.deprecated.scalar_summary(l.op.name, loss_averages.average(l))

return loss_averages_op

Expand Down Expand Up @@ -345,7 +345,7 @@ def train(total_loss, global_step):
decay_steps,
LEARNING_RATE_DECAY_FACTOR,
staircase=True)
tf.scalar_summary('learning_rate', lr)
tf.contrib.deprecated.scalar_summary('learning_rate', lr)

# Generate moving averages of all losses and associated summaries.
loss_averages_op = _add_loss_summaries(total_loss)
Expand All @@ -360,12 +360,12 @@ def train(total_loss, global_step):

# Add histograms for trainable variables.
for var in tf.trainable_variables():
tf.histogram_summary(var.op.name, var)
tf.contrib.deprecated.histogram_summary(var.op.name, var)

# Add histograms for gradients.
for grad, var in grads:
if grad is not None:
tf.histogram_summary(var.op.name + '/gradients', grad)
tf.contrib.deprecated.histogram_summary(var.op.name + '/gradients', grad)

# Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingAverage(
Expand Down
2 changes: 1 addition & 1 deletion tutorials/image/cifar10/cifar10_input.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,7 +132,7 @@ def _generate_image_and_label_batch(image, label, min_queue_examples,
capacity=min_queue_examples + 3 * batch_size)

# Display the training images in the visualizer.
tf.image_summary('images', images)
tf.contrib.deprecated.image_summary('images', images)

return images, tf.reshape(label_batch, [batch_size])

Expand Down
10 changes: 5 additions & 5 deletions tutorials/image/cifar10/cifar10_multi_gpu_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ def tower_loss(scope):
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
tf.scalar_summary(loss_name, l)
tf.contrib.deprecated.scalar_summary(loss_name, l)

return total_loss

Expand Down Expand Up @@ -187,13 +187,13 @@ def train():
grads = average_gradients(tower_grads)

# Add a summary to track the learning rate.
summaries.append(tf.scalar_summary('learning_rate', lr))
summaries.append(tf.contrib.deprecated.scalar_summary('learning_rate', lr))

# Add histograms for gradients.
for grad, var in grads:
if grad is not None:
summaries.append(
tf.histogram_summary(var.op.name + '/gradients',
tf.contrib.deprecated.histogram_summary(var.op.name + '/gradients',
grad))

# Apply the gradients to adjust the shared variables.
Expand All @@ -202,7 +202,7 @@ def train():
# Add histograms for trainable variables.
for var in tf.trainable_variables():
summaries.append(
tf.histogram_summary(var.op.name, var))
tf.contrib.deprecated.histogram_summary(var.op.name, var))

# Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingAverage(
Expand All @@ -216,7 +216,7 @@ def train():
saver = tf.train.Saver(tf.global_variables())

# Build the summary operation from the last tower summaries.
summary_op = tf.merge_summary(summaries)
summary_op = tf.contrib.deprecated.merge_summary(summaries)

# Build an initialization operation to run below.
init = tf.global_variables_initializer()
Expand Down

0 comments on commit d43335c

Please sign in to comment.