Skip to content

Commit

Permalink
migrating from tensorrt 4 to7 (wang-xinyu#224)
Browse files Browse the repository at this point in the history
  • Loading branch information
BaofengZan authored and wang-xinyu committed Nov 6, 2020
1 parent 08126b1 commit d3930c1
Show file tree
Hide file tree
Showing 2 changed files with 523 additions and 558 deletions.
337 changes: 337 additions & 0 deletions hrnet/hrnet-image-classification/common.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,337 @@
#pragma once

#include <fstream>
#include <map>
#include <sstream>
#include <vector>
#include <opencv2/opencv.hpp>
#include <dirent.h>
#include "NvInfer.h"
#include "NvInferPlugin.h"
#include "cuda_runtime_api.h"

using namespace nvinfer1;

#define CHECK(status) \
do\
{\
auto ret = (status);\
if (ret != 0)\
{\
std::cerr << "Cuda failure: " << ret << std::endl;\
abort();\
}\
} while (0)

int read_files_in_dir(const char *p_dir_name, std::vector<std::string> &file_names) {
DIR *p_dir = opendir(p_dir_name);
if (p_dir == nullptr) {
return -1;
}

struct dirent* p_file = nullptr;
while ((p_file = readdir(p_dir)) != nullptr) {
if (strcmp(p_file->d_name, ".") != 0 &&
strcmp(p_file->d_name, "..") != 0) {
//std::string cur_file_name(p_dir_name);
//cur_file_name += "/";
//cur_file_name += p_file->d_name;
std::string cur_file_name(p_file->d_name);
file_names.push_back(cur_file_name);
}
}

closedir(p_dir);
return 0;
}

// TensorRT weight files have a simple space delimited format:
// [type] [size] <data x size in hex>
std::map<std::string, Weights> loadWeights(const std::string file) {
std::cout << "Loading weights: " << file << std::endl;
std::map<std::string, Weights> weightMap;

// Open weights file
std::ifstream input(file);
assert(input.is_open() && "Unable to load weight file.");

// Read number of weight blobs
int32_t count;
input >> count;
assert(count > 0 && "Invalid weight map file.");

while (count--)
{
Weights wt{ DataType::kFLOAT, nullptr, 0 };
uint32_t size;

// Read name and type of blob
std::string name;
input >> name >> std::dec >> size;
wt.type = DataType::kFLOAT;

// Load blob
uint32_t* val = reinterpret_cast<uint32_t*>(malloc(sizeof(val) * size));
for (uint32_t x = 0, y = size; x < y; ++x)
{
input >> std::hex >> val[x];
}
wt.values = val;

wt.count = size;
weightMap[name] = wt;
}

return weightMap;
}

IScaleLayer* addBatchNorm2d(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, std::string lname, float eps) {
float *gamma = (float*)weightMap[lname + ".weight"].values;
float *beta = (float*)weightMap[lname + ".bias"].values;
float *mean = (float*)weightMap[lname + ".running_mean"].values;
float *var = (float*)weightMap[lname + ".running_var"].values;
int len = weightMap[lname + ".running_var"].count;
//std::cout << "len " << len << std::endl;

float *scval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
scval[i] = gamma[i] / sqrt(var[i] + eps);
}
Weights scale{ DataType::kFLOAT, scval, len };

float *shval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
shval[i] = beta[i] - mean[i] * gamma[i] / sqrt(var[i] + eps);
}
Weights shift{ DataType::kFLOAT, shval, len };

float *pval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
pval[i] = 1.0;
}
Weights power{ DataType::kFLOAT, pval, len };

weightMap[lname + ".scale"] = scale;
weightMap[lname + ".shift"] = shift;
weightMap[lname + ".power"] = power;
IScaleLayer* scale_1 = network->addScale(input, ScaleMode::kCHANNEL, shift, scale, power);
assert(scale_1);
return scale_1;
}

ILayer* convBnLeaky(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int outch, int ksize, int s, int p, std::string convname, std::string bnname, bool bias = false) {
Weights emptywts{ DataType::kFLOAT, nullptr, 0 };
IConvolutionLayer* conv1;
//Dims dim;
if (!bias)
{
conv1 = network->addConvolutionNd(input, outch, DimsHW{ ksize, ksize }, weightMap[convname + ".weight"], emptywts);
}
else
{
conv1 = network->addConvolutionNd(input, outch, DimsHW{ ksize, ksize }, weightMap[convname + ".weight"], weightMap[convname + ".bias"]);
}
assert(conv1);
conv1->setStrideNd(DimsHW{ s, s });
conv1->setPaddingNd(DimsHW{ p, p });
IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), bnname, 1e-4);
auto lr = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
return lr;
}

IActivationLayer* ResBlock2Conv(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int inch, int outch, int stride, std::string lname) {
Weights emptywts{ DataType::kFLOAT, nullptr, 0 };
IConvolutionLayer* conv1 = network->addConvolutionNd(input, inch, DimsHW{ 1, 1 }, weightMap[lname + ".conv1.weight"], emptywts);
assert(conv1);
conv1->setStrideNd(DimsHW{ stride, stride });
conv1->setPaddingNd(DimsHW{ 0, 0 });

IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + ".bn1", 1e-5);
IActivationLayer* relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
assert(relu1);
///
IConvolutionLayer* conv2 = network->addConvolutionNd(*relu1->getOutput(0), inch, DimsHW{ 3, 3 }, weightMap[lname + ".conv2.weight"], emptywts);
assert(conv2);
conv2->setStrideNd(DimsHW{ stride, stride });
conv2->setPaddingNd(DimsHW{ 1, 1 });

IScaleLayer* bn2 = addBatchNorm2d(network, weightMap, *conv2->getOutput(0), lname + ".bn2", 1e-5);

IActivationLayer* relu2 = network->addActivation(*bn2->getOutput(0), ActivationType::kRELU);
assert(relu2);
//////
IConvolutionLayer* conv3 = network->addConvolutionNd(*relu2->getOutput(0), outch, DimsHW{ 1, 1 }, weightMap[lname + ".conv3.weight"], emptywts);
assert(conv3);
conv1->setStrideNd(DimsHW{ stride, stride });
conv3->setPaddingNd(DimsHW{ 0, 0 });

IScaleLayer* bn3 = addBatchNorm2d(network, weightMap, *conv3->getOutput(0), lname + ".bn3", 1e-5);

IElementWiseLayer* ew1;
if (inch != outch) {
IConvolutionLayer* conv4 = network->addConvolutionNd(input, outch, DimsHW{ 1, 1 }, weightMap[lname + ".downsample.0.weight"], emptywts);
assert(conv4);
conv4->setStrideNd(DimsHW{ stride, stride });
conv4->setPaddingNd(DimsHW{ 0, 0 });
IScaleLayer* bn4 = addBatchNorm2d(network, weightMap, *conv4->getOutput(0), lname + ".downsample.1", 1e-5);
ew1 = network->addElementWise(*bn4->getOutput(0), *bn3->getOutput(0), ElementWiseOperation::kSUM);
}
else {
ew1 = network->addElementWise(input, *bn3->getOutput(0), ElementWiseOperation::kSUM);
}
IActivationLayer* relu3 = network->addActivation(*ew1->getOutput(0), ActivationType::kRELU);
assert(relu3);
return relu3;
}

IActivationLayer* ResBlock(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int inch, int outch, int stride, std::string lname) {
Weights emptywts{ DataType::kFLOAT, nullptr, 0 };
// in 256 out 64
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{ 1, 1 }, weightMap[lname + ".conv1.weight"], emptywts);
assert(conv1);
conv1->setStrideNd(DimsHW{ stride, stride });
conv1->setPaddingNd(DimsHW{ 0, 0 });

IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + ".bn1", 1e-5);

IActivationLayer* relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
assert(relu1);
///
IConvolutionLayer* conv2 = network->addConvolutionNd(*relu1->getOutput(0), outch, DimsHW{ 3, 3 }, weightMap[lname + ".conv2.weight"], emptywts);
assert(conv2);
conv2->setStrideNd(DimsHW{ stride, stride });
conv2->setPaddingNd(DimsHW{ 1, 1 });

IScaleLayer* bn2 = addBatchNorm2d(network, weightMap, *conv2->getOutput(0), lname + ".bn2", 1e-5);

IActivationLayer* relu2 = network->addActivation(*bn2->getOutput(0), ActivationType::kRELU);
assert(relu2);
//////
IConvolutionLayer* conv3 = network->addConvolutionNd(*relu2->getOutput(0), inch, DimsHW{ 1, 1 }, weightMap[lname + ".conv3.weight"], emptywts);
assert(conv3);
conv1->setStrideNd(DimsHW{ stride, stride });
conv1->setPaddingNd(DimsHW{ 0, 0 });

IScaleLayer* bn3 = addBatchNorm2d(network, weightMap, *conv3->getOutput(0), lname + ".bn3", 1e-5);

IElementWiseLayer* ew1;
ew1 = network->addElementWise(input, *bn3->getOutput(0), ElementWiseOperation::kSUM);
IActivationLayer* relu3 = network->addActivation(*ew1->getOutput(0), ActivationType::kRELU);
assert(relu3);
return relu3;
}

IActivationLayer* liteResBlock(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int outch, std::string lname) {
Weights emptywts{ DataType::kFLOAT, nullptr, 0 };
// in 256 out 64
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{ 3, 3 }, weightMap[lname + ".conv1.weight"], emptywts);
assert(conv1);
conv1->setStrideNd(DimsHW{ 1, 1 });
conv1->setPaddingNd(DimsHW{ 1, 1 });

IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + ".bn1", 1e-5);

IActivationLayer* relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
assert(relu1);
///
IConvolutionLayer* conv2 = network->addConvolutionNd(*relu1->getOutput(0), outch, DimsHW{ 3, 3 }, weightMap[lname + ".conv2.weight"], emptywts);
assert(conv2);
conv2->setStrideNd(DimsHW{ 1, 1 });
conv2->setPaddingNd(DimsHW{ 1, 1 });

IScaleLayer* bn2 = addBatchNorm2d(network, weightMap, *conv2->getOutput(0), lname + ".bn2", 1e-5);

IElementWiseLayer* ew1;
ew1 = network->addElementWise(input, *bn2->getOutput(0), ElementWiseOperation::kSUM);

IActivationLayer* relu3 = network->addActivation(*ew1->getOutput(0), ActivationType::kRELU);
assert(relu3);
return relu3;
}

ILayer* netAddUpsample(INetworkDefinition* network, ITensor* input, int inputChannels, int stride){
nvinfer1::Dims inpDims = input->getDimensions();
assert(inpDims.nbDims == 3); // chw
assert(inpDims.d[1] == inpDims.d[2]);
int h = inpDims.d[1];
int w = inpDims.d[2];
// add pre multiply matrix as a constant
/*
kSPATIA Elements correspond to different spatial data.
kCHANNEL Elements correspond to different channels.
*/
nvinfer1::Dims preDims{ 3,
{1, stride * h, w},
{nvinfer1::DimensionType::kCHANNEL,
nvinfer1::DimensionType::kSPATIAL,
nvinfer1::DimensionType::kSPATIAL} };
int size = stride * h * w;
nvinfer1::Weights preMul{ nvinfer1::DataType::kFLOAT, nullptr, size };
float* preWt = new float[size];
/* (2*h * w)
[ [1, 0, ..., 0],
[1, 0, ..., 0],
[0, 1, ..., 0],
[0, 1, ..., 0],
...,
...,
[0, 0, ..., 1],
[0, 0, ..., 1] ]
*/
for (int i = 0, idx = 0; i < h; ++i)
{
for (int s = 0; s < stride; ++s)
{
for (int j = 0; j < w; ++j, ++idx)
{
preWt[idx] = (i == j) ? 1.0 : 0.0;
}
}
}
preMul.values = preWt;
nvinfer1::IConstantLayer* preM = network->addConstant(preDims, preMul);
assert(preM != nullptr);
//std::string preLayerName = "preMul_" + std::to_string(layerIdx);
//preM->setName(preLayerName.c_str());
// add post multiply matrix as a constant
nvinfer1::Dims postDims{ 3,
{1, h, stride * w},
{nvinfer1::DimensionType::kCHANNEL,
nvinfer1::DimensionType::kSPATIAL,
nvinfer1::DimensionType::kSPATIAL} };
size = stride * h * w;
nvinfer1::Weights postMul{ nvinfer1::DataType::kFLOAT, nullptr, size };
float* postWt = new float[size];
/* (h * 2*w)
[ [1, 1, 0, 0, ..., 0, 0],
[0, 0, 1, 1, ..., 0, 0],
...,
...,
[0, 0, 0, 0, ..., 1, 1] ]
*/
for (int i = 0, idx = 0; i < h; ++i)
{
for (int j = 0; j < stride * w; ++j, ++idx)
{
postWt[idx] = (j / stride == i) ? 1.0 : 0.0;
}
}
postMul.values = postWt;
nvinfer1::IConstantLayer* post_m = network->addConstant(postDims, postMul);
assert(post_m != nullptr);
// add matrix multiply layers for upsampling
nvinfer1::IMatrixMultiplyLayer* mm1
= network->addMatrixMultiply(*preM->getOutput(0),
nvinfer1::MatrixOperation::kNONE, *input,
nvinfer1::MatrixOperation::kNONE);
assert(mm1 != nullptr);
nvinfer1::IMatrixMultiplyLayer* mm2
= network->addMatrixMultiply(*mm1->getOutput(0),
nvinfer1::MatrixOperation::kNONE,
*post_m->getOutput(0),
nvinfer1::MatrixOperation::kNONE);
assert(mm2 != nullptr);
return mm2;
}

Loading

0 comments on commit d3930c1

Please sign in to comment.