Skip to content
forked from miso-belica/sumy

Module for automatic summarization of text documents and HTML pages.

License

Notifications You must be signed in to change notification settings

marcejohnson/sumy

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Automatic text summarizer

image

Simple library and command line utility for extracting summary from HTML pages or plain texts. The package also contains simple evaluation framework for text summaries. Implemented summarization methods:

Here are some other summarizers:

Installation

Make sure you have Python 2.7/3.3+ and pip (Windows, Linux) installed. Run simply (preferred way):

$ [sudo] pip install sumy

Or for the fresh version:

$ [sudo] pip install git+git://github.com/miso-belica/sumy.git

Usage

Sumy contains command line utility for quick summarization of documents.

$ sumy lex-rank --length=10 --url=http://en.wikipedia.org/wiki/Automatic_summarization # what's summarization?
$ sumy luhn --language=czech --url=http://www.zdrojak.cz/clanky/automaticke-zabezpeceni/
$ sumy edmundson --language=czech --length=3% --url=http://cs.wikipedia.org/wiki/Bitva_u_Lipan
$ sumy --help # for more info

Various evaluation methods for some summarization method can be executed by commands below:

$ sumy_eval lex-rank reference_summary.txt --url=http://en.wikipedia.org/wiki/Automatic_summarization
$ sumy_eval lsa reference_summary.txt --language=czech --url=http://www.zdrojak.cz/clanky/automaticke-zabezpeceni/
$ sumy_eval edmundson reference_summary.txt --language=czech --url=http://cs.wikipedia.org/wiki/Bitva_u_Lipan
$ sumy_eval --help # for more info

Python API

Or you can use sumy like a library in your project.

# -*- coding: utf8 -*-

from __future__ import absolute_import
from __future__ import division, print_function, unicode_literals

from sumy.parsers.html import HtmlParser
from sumy.parsers.plaintext import PlaintextParser
from sumy.nlp.tokenizers import Tokenizer
from sumy.summarizers.lsa import LsaSummarizer as Summarizer
from sumy.nlp.stemmers import Stemmer
from sumy.utils import get_stop_words


LANGUAGE = "czech"
SENTENCES_COUNT = 10


if __name__ == "__main__":
    url = "http://www.zsstritezuct.estranky.cz/clanky/predmety/cteni/jak-naucit-dite-spravne-cist.html"
    parser = HtmlParser.from_url(url, Tokenizer(LANGUAGE))
    # or for plain text files
    # parser = PlaintextParser.from_file("document.txt", Tokenizer(LANGUAGE))
    stemmer = Stemmer(LANGUAGE)

    summarizer = Summarizer(stemmer)
    summarizer.stop_words = get_stop_words(LANGUAGE)

    for sentence in summarizer(parser.document, SENTENCES_COUNT):
        print(sentence)

Tests

Setup:

$ pip install pytest pytest-cov

Run tests via

$ py.test-2.7 && py.test-3.3 && py.test-3.4 && py.test-3.5

About

Module for automatic summarization of text documents and HTML pages.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.8%
  • HTML 0.2%