forked from lucidrains/vit-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d04ce06
commit e712003
Showing
3 changed files
with
282 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,270 @@ | ||
import torch | ||
from torch import nn, einsum | ||
import torch.nn.functional as F | ||
|
||
from einops import rearrange, repeat | ||
from einops.layers.torch import Rearrange | ||
|
||
# helpers | ||
|
||
def exists(val): | ||
return val is not None | ||
|
||
def default(val, d): | ||
return val if exists(val) else d | ||
|
||
# pre-layernorm | ||
|
||
class PreNorm(nn.Module): | ||
def __init__(self, dim, fn): | ||
super().__init__() | ||
self.norm = nn.LayerNorm(dim) | ||
self.fn = fn | ||
def forward(self, x, **kwargs): | ||
return self.fn(self.norm(x), **kwargs) | ||
|
||
# feedforward | ||
|
||
class FeedForward(nn.Module): | ||
def __init__(self, dim, hidden_dim, dropout = 0.): | ||
super().__init__() | ||
self.net = nn.Sequential( | ||
nn.Linear(dim, hidden_dim), | ||
nn.GELU(), | ||
nn.Dropout(dropout), | ||
nn.Linear(hidden_dim, dim), | ||
nn.Dropout(dropout) | ||
) | ||
def forward(self, x): | ||
return self.net(x) | ||
|
||
# attention | ||
|
||
class Attention(nn.Module): | ||
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): | ||
super().__init__() | ||
inner_dim = dim_head * heads | ||
self.heads = heads | ||
self.scale = dim_head ** -0.5 | ||
|
||
self.attend = nn.Softmax(dim = -1) | ||
self.to_q = nn.Linear(dim, inner_dim, bias = False) | ||
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) | ||
|
||
self.to_out = nn.Sequential( | ||
nn.Linear(inner_dim, dim), | ||
nn.Dropout(dropout) | ||
) | ||
|
||
def forward(self, x, context = None, kv_include_self = False): | ||
b, n, _, h = *x.shape, self.heads | ||
context = default(context, x) | ||
|
||
if kv_include_self: | ||
context = torch.cat((x, context), dim = 1) # cross attention requires CLS token includes itself as key / value | ||
|
||
qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1)) | ||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) | ||
|
||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale | ||
|
||
attn = self.attend(dots) | ||
|
||
out = einsum('b h i j, b h j d -> b h i d', attn, v) | ||
out = rearrange(out, 'b h n d -> b n (h d)') | ||
return self.to_out(out) | ||
|
||
# transformer encoder, for small and large patches | ||
|
||
class Transformer(nn.Module): | ||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): | ||
super().__init__() | ||
self.layers = nn.ModuleList([]) | ||
self.norm = nn.LayerNorm(dim) | ||
for _ in range(depth): | ||
self.layers.append(nn.ModuleList([ | ||
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), | ||
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) | ||
])) | ||
|
||
def forward(self, x): | ||
for attn, ff in self.layers: | ||
x = attn(x) + x | ||
x = ff(x) + x | ||
return self.norm(x) | ||
|
||
# projecting CLS tokens, in the case that small and large patch tokens have different dimensions | ||
|
||
class ProjectInOut(nn.Module): | ||
def __init__(self, dim_in, dim_out, fn): | ||
super().__init__() | ||
self.fn = fn | ||
|
||
need_projection = dim_in != dim_out | ||
self.project_in = nn.Linear(dim_in, dim_out) if need_projection else nn.Identity() | ||
self.project_out = nn.Linear(dim_out, dim_in) if need_projection else nn.Identity() | ||
|
||
def forward(self, x, *args, **kwargs): | ||
x = self.project_in(x) | ||
x = self.fn(x, *args, **kwargs) | ||
x = self.project_out(x) | ||
return x | ||
|
||
# cross attention transformer | ||
|
||
class CrossTransformer(nn.Module): | ||
def __init__(self, sm_dim, lg_dim, depth, heads, dim_head, dropout): | ||
super().__init__() | ||
self.layers = nn.ModuleList([]) | ||
for _ in range(depth): | ||
self.layers.append(nn.ModuleList([ | ||
ProjectInOut(sm_dim, lg_dim, PreNorm(lg_dim, Attention(lg_dim, heads = heads, dim_head = dim_head, dropout = dropout))), | ||
ProjectInOut(lg_dim, sm_dim, PreNorm(sm_dim, Attention(sm_dim, heads = heads, dim_head = dim_head, dropout = dropout))) | ||
])) | ||
|
||
def forward(self, sm_tokens, lg_tokens): | ||
(sm_cls, sm_patch_tokens), (lg_cls, lg_patch_tokens) = map(lambda t: (t[:, :1], t[:, 1:]), (sm_tokens, lg_tokens)) | ||
|
||
for sm_attend_lg, lg_attend_sm in self.layers: | ||
sm_cls = sm_attend_lg(sm_cls, context = lg_patch_tokens, kv_include_self = True) + sm_cls | ||
lg_cls = lg_attend_sm(lg_cls, context = sm_patch_tokens, kv_include_self = True) + lg_cls | ||
|
||
sm_tokens = torch.cat((sm_cls, sm_patch_tokens), dim = 1) | ||
lg_tokens = torch.cat((lg_cls, lg_patch_tokens), dim = 1) | ||
return sm_tokens, lg_tokens | ||
|
||
# multi-scale encoder | ||
|
||
class MultiScaleEncoder(nn.Module): | ||
def __init__( | ||
self, | ||
*, | ||
depth, | ||
sm_dim, | ||
lg_dim, | ||
sm_enc_params, | ||
lg_enc_params, | ||
cross_attn_heads, | ||
cross_attn_depth, | ||
cross_attn_dim_head = 64, | ||
dropout = 0. | ||
): | ||
super().__init__() | ||
self.layers = nn.ModuleList([]) | ||
for _ in range(depth): | ||
self.layers.append(nn.ModuleList([ | ||
Transformer(dim = sm_dim, dropout = dropout, **sm_enc_params), | ||
Transformer(dim = lg_dim, dropout = dropout, **lg_enc_params), | ||
CrossTransformer(sm_dim = sm_dim, lg_dim = lg_dim, depth = cross_attn_depth, heads = cross_attn_heads, dim_head = cross_attn_dim_head, dropout = dropout) | ||
])) | ||
|
||
def forward(self, sm_tokens, lg_tokens): | ||
for sm_enc, lg_enc, cross_attend in self.layers: | ||
sm_tokens, lg_tokens = sm_enc(sm_tokens), lg_enc(lg_tokens) | ||
sm_tokens, lg_tokens = cross_attend(sm_tokens, lg_tokens) | ||
|
||
return sm_tokens, lg_tokens | ||
|
||
# patch-based image to token embedder | ||
|
||
class ImageEmbedder(nn.Module): | ||
def __init__( | ||
self, | ||
*, | ||
dim, | ||
image_size, | ||
patch_size, | ||
dropout = 0. | ||
): | ||
super().__init__() | ||
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.' | ||
num_patches = (image_size // patch_size) ** 2 | ||
patch_dim = 3 * patch_size ** 2 | ||
|
||
self.to_patch_embedding = nn.Sequential( | ||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), | ||
nn.Linear(patch_dim, dim), | ||
) | ||
|
||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) | ||
self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) | ||
self.dropout = nn.Dropout(dropout) | ||
|
||
def forward(self, img): | ||
x = self.to_patch_embedding(img) | ||
b, n, _ = x.shape | ||
|
||
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) | ||
x = torch.cat((cls_tokens, x), dim=1) | ||
x += self.pos_embedding[:, :(n + 1)] | ||
|
||
return self.dropout(x) | ||
|
||
# cross ViT class | ||
|
||
class CrossViT(nn.Module): | ||
def __init__( | ||
self, | ||
*, | ||
image_size, | ||
num_classes, | ||
sm_dim, | ||
lg_dim, | ||
sm_patch_size = 12, | ||
sm_enc_depth = 1, | ||
sm_enc_heads = 8, | ||
sm_enc_mlp_dim = 2048, | ||
sm_enc_dim_head = 64, | ||
lg_patch_size = 16, | ||
lg_enc_depth = 4, | ||
lg_enc_heads = 8, | ||
lg_enc_mlp_dim = 2048, | ||
lg_enc_dim_head = 64, | ||
cross_attn_depth = 2, | ||
cross_attn_heads = 8, | ||
cross_attn_dim_head = 64, | ||
depth = 3, | ||
dropout = 0.1, | ||
emb_dropout = 0.1 | ||
): | ||
super().__init__() | ||
self.sm_image_embedder = ImageEmbedder(dim = sm_dim, image_size = image_size, patch_size = sm_patch_size, dropout = emb_dropout) | ||
self.lg_image_embedder = ImageEmbedder(dim = lg_dim, image_size = image_size, patch_size = lg_patch_size, dropout = emb_dropout) | ||
|
||
self.multi_scale_encoder = MultiScaleEncoder( | ||
depth = depth, | ||
sm_dim = sm_dim, | ||
lg_dim = lg_dim, | ||
cross_attn_heads = cross_attn_heads, | ||
cross_attn_dim_head = cross_attn_dim_head, | ||
cross_attn_depth = cross_attn_depth, | ||
sm_enc_params = dict( | ||
depth = sm_enc_depth, | ||
heads = sm_enc_heads, | ||
mlp_dim = sm_enc_mlp_dim, | ||
dim_head = sm_enc_dim_head | ||
), | ||
lg_enc_params = dict( | ||
depth = lg_enc_depth, | ||
heads = lg_enc_heads, | ||
mlp_dim = lg_enc_mlp_dim, | ||
dim_head = lg_enc_dim_head | ||
), | ||
dropout = dropout | ||
) | ||
|
||
self.sm_mlp_head = nn.Sequential(nn.LayerNorm(sm_dim), nn.Linear(sm_dim, num_classes)) | ||
self.lg_mlp_head = nn.Sequential(nn.LayerNorm(lg_dim), nn.Linear(lg_dim, num_classes)) | ||
|
||
def forward(self, img): | ||
sm_tokens = self.sm_image_embedder(img) | ||
lg_tokens = self.lg_image_embedder(img) | ||
|
||
sm_tokens, lg_tokens = self.multi_scale_encoder(sm_tokens, lg_tokens) | ||
|
||
sm_cls, lg_cls = map(lambda t: t[:, 0], (sm_tokens, lg_tokens)) | ||
|
||
sm_logits = self.sm_mlp_head(sm_cls) | ||
lg_logits = self.lg_mlp_head(lg_cls) | ||
|
||
return sm_logits + lg_logits |