Skip to content

Commit

Permalink
Update trie.md
Browse files Browse the repository at this point in the history
  • Loading branch information
azl397985856 authored Jan 13, 2021
1 parent 3b86dae commit ad93454
Showing 1 changed file with 184 additions and 15 deletions.
199 changes: 184 additions & 15 deletions thinkings/trie.md
Original file line number Diff line number Diff line change
@@ -1,48 +1,217 @@
# 前缀树问题
# Trie(来自公众号力扣加加的活动《91天学算法》的讲义)

## 介绍
## 简介

字典树也叫前缀树、Trie。它本身就是一个树型结构,也就是一颗多叉树,学过树的朋友应该非常容易理解,它的核心操作是插入,查找。删除很少使用,因此这个讲义不包含删除操作。

截止目前(2020-02-04) [前缀树(字典树)](https://leetcode-cn.com/tag/trie/) 在 LeetCode 一共有 17 道题目。其中 2 道简单,8 个中等,7 个困难。

这里总结了六道题,弄懂这几道, 那么前缀树对你应该不是大问题, 希望这个专题可以帮到正在学习前缀树的你。
## 前缀树的特点

简单来说, 前缀树就是一个树。前缀树一般是将一系列的单词记录到树上, 如果这些单词没有公共前缀,则和直接用数组存没有任何区别。而如果有公共前缀, 则公共前缀仅会被存储一次。可以想象,如果一系列单词的公共前缀很多, 则会有效减少空间消耗。

而前缀树的意义实际上是空间换时间,这和哈希表,动态规划等的初衷是一样的。

其原理也很简单,正如我前面所言,其公共前缀仅会被存储一次,因此如果我想在一堆单词中找某个单词或者某个前缀是否出现,我无需进行完整遍历,而是遍历前缀树即可。本质上,使用前缀树和不使用前缀树减少的时间就是公共前缀的数目。也就是说,一堆单词没有公共前缀,使用前缀树没有任何意义。

知道了前缀树的作用和使用场景,接下来我们自己实现一个前缀树。关于实现可以参考 [0208.implement-trie-prefix-tree](https://github.com/azl397985856/leetcode/blob/b8e8fa5f0554926efa9039495b25ed7fc158372a/problems/208.implement-trie-prefix-tree.md)
知道了前缀树的特点,接下来我们自己实现一个前缀树。关于实现可以参考 [0208.implement-trie-prefix-tree](https://github.com/azl397985856/leetcode/blob/b8e8fa5f0554926efa9039495b25ed7fc158372a/problems/208.implement-trie-prefix-tree.md)

## 应用场景及分析

正如上面所说,前缀树的核心思想是用空间换时间,利用字符串的公共前缀来降低查询的时间开销。

比如给你一个字符串 query,问你这个**字符串**是否在**字符串集合**中出现过,这样我们就可以将字符串集合建树,建好之后来匹配 query 是否出现,那有的朋友肯定会问,之前讲过的 hashmap 岂不是更好?

## API
我们想一下用百度搜索时候,打个“一语”,搜索栏中会给出“一语道破”,“一语成谶(四声的 chen)”等推荐文本,这种叫模糊匹配,也就是给出一个模糊的 query,希望给出一个相关推荐列表,很明显,hashmap 并不容易做到模糊匹配,而 Trie 可以实现基于前缀的模糊搜索。

自己实现前缀树,首先要知道它的 api 有哪些,以及具体功能是什么。
> 注意这里的模糊搜索也仅仅是基于前缀的。比如还是上面的例子,搜索“道破”就不会匹配到“一语道破”,而只能匹配“道破 xx”
前缀树的 api 主要有以下几个:
因此,这里我的理解是:上述精确查找只是模糊查找一个特例,模糊查找 hashmap 显然做不到,并且如果在精确查找问题中,hashmap 出现过多冲突,效率还不一定比 Trie 高,有兴趣的朋友可以做一下测试,看看哪个快。

- `insert(word)`: 插入一个单词
- `search(word)`:查找一个单词是否存在
- `startWith(word)`: 查找是否存在以 word 为前缀的单词
再比如给你一个长句和一堆敏感词,找出长句中所有敏感词出现的所有位置(想下,有时候我们口吐芬芳,结果发送出去却变成了\*\*\*\*,懂了吧)

其中 startWith 是前缀树最核心的用法,其名称前缀树就从这里而来。大家可以先拿 208 题开始,熟悉一下前缀树,然后再尝试别的题目
> 小提示:实际上 AC 自动机就利用了 trie 的性质来实现敏感词的匹配,性能非常好。以至于很多编辑器都是用的 AC 自动机的算法
## 图解
还有些其他场景,这里不过多讨论,有兴趣的可以 google 一下。

## 基本概念

一个前缀树大概是这个样子:

![](https://tva1.sinaimg.cn/large/007S8ZIlly1ghlug87vyfj30mz0gq406.jpg)

如图每一个节点存储一个字符,然后外加一个控制信息表示是否是单词结尾,实际使用过程可能会有细微差别,不过变化不大。

接下来,我们看下 Trie 里面的概念。

### 节点:

- 根结点无实际意义
- 每一个节点代表一个字符
- 每个节点中的数据结构可以自定义,如 isWord(是否是单词),count(该前缀出现的次数)等,需实际问题实际分析需要什么。

### Trie 的插入

- 假定给出几个单词如[she,he,her,good,god]构造出一个 Trie 如下图:

![Trie%200c1c1245b4df467e91ceb6931c94701d/Untitled.png](Trie%200c1c1245b4df467e91ceb6931c94701d/Untitled.png)

- 也就是说从根结点出发到某一粉色节点所经过的字符组成的单词,在单词列表中出现过,当然我们也可以给树的每个节点加个 count 属性,代表根结点到该节点所构成的字符串前缀出现的次数

![Trie%200c1c1245b4df467e91ceb6931c94701d/Untitled%201.png](Trie%200c1c1245b4df467e91ceb6931c94701d/Untitled%201.png)

可以看出树的构造非常简单,插入新单词的时候就从根结点出发一个字符一个字符插入,有对应的字符节点就更新对应的属性,没有就创建一个!

### Trie 的查询

查询更简单了,给定一个 Trie 和一个单词,和插入的过程类似,一个字符一个字符找

- 若中途有个字符没有对应节点 →Trie 不含该单词
- 若字符串遍历完了,都有对应节点,但最后一个字符对应的节点并不是粉色的,也就不是一个单词 →Trie 不含该单词

## Trie 模版

了解了 Trie 的使用场景以及基本的 API, 那么最后就是用代码来实现了。

这里我提供了 Python 和 Java 两种语言的代码。

Java:

```java
class Trie {

TrieNode root;

public Trie() {

root = new TrieNode();
}

public void insert(String word) {

TrieNode node = root;

for (int i = 0; i < word.length(); i++) {

if (node.children[word.charAt(i) - 'a'] == null)
node.children[word.charAt(i) - 'a'] = new TrieNode();

node = node.children[word.charAt(i) - 'a'];
node.preCount++;
}

node.count++;
}

public boolean search(String word) {

TrieNode node = root;

for (int i = 0; i < word.length(); i++) {

if (node.children[word.charAt(i) - 'a'] == null)
return false;

node = node.children[word.charAt(i) - 'a'];
}

return node.count > 0;
}

public boolean startsWith(String prefix) {

TrieNode node = root;

for (int i = 0; i < prefix.length(); i++) {

if (node.children[prefix.charAt(i) - 'a'] == null)
return false;
node = node.children[prefix.charAt(i) - 'a'];
}

return node.preCount > 0;
}

private class TrieNode {

int count; //表示以该处节点构成的串的个数
int preCount; //表示以该处节点构成的前缀的字串的个数
TrieNode[] children;

TrieNode() {

children = new TrieNode[26];
count = 0;
preCount = 0;
}
}
}
```

Python:

```python
class TrieNode:
def __init__(self):
self.count = 0
self.preCount = 0
self.children = {}

class Trie:

def __init__(self):
self.root = TrieNode()

def insert(self, word):
node = self.root
for ch in word:
if ch not in node.children:
node.children[ch] = TrieNode()
node = node.children[ch]
node.preCount += 1
node.count += 1

def search(self, word):
node = self.root
for ch in word:
if ch not in node.children:
return False
node = node.children[ch]
return node.count > 0

def startsWith(self, prefix):
node = self.root
for ch in prefix:
if ch not in node.children:
return False
node = node.children[ch]
return node.preCount > 0
```

**复杂度分析**

- 插入和查询的时间复杂度自然是$O(len(key))$,key 是待插入(查找)的字串。

- 建树的最坏空间复杂度是$O(m^{n})$, m 是字符集中字符个数,n 是字符串长度。

## 题目推荐

以下是本专题的六道题目的题解,内容会持续更新,感谢你的关注~

- [0208.实现 Trie (前缀树)](https://github.com/azl397985856/leetcode/blob/b8e8fa5f0554926efa9039495b25ed7fc158372a/problems/208.implement-trie-prefix-tree.md)
- [0211.添加与搜索单词 - 数据结构设计](https://github.com/azl397985856/leetcode/blob/b0b69f8f11dace3a9040b54532105d42e88e6599/problems/211.add-and-search-word-data-structure-design.md)
- [0212.单词搜索 II](https://github.com/azl397985856/leetcode/blob/b0b69f8f11dace3a9040b54532105d42e88e6599/problems/212.word-search-ii.md)
- [0472.连接词](https://github.com/azl397985856/leetcode/blob/master/problems/472.concatenated-words.md)
- [648. 单词替换](https://leetcode-cn.com/problems/replace-words/)
- [0820.单词的压缩编码](https://github.com/azl397985856/leetcode/blob/master/problems/820.short-encoding-of-words.md)
- [1032.字符流](../problems/1032.stream-of-characters.md)
- [1032.字符流](https://github.com/azl397985856/leetcode/blob/master/problems/1032.stream-of-characters.md)

## 总结

前缀树的核心思想是用空间换时间,利用字符串的公共前缀来降低查询的时间开销。因此如果题目中公共前缀比较多,就可以考虑使用前缀树来优化。

前缀树的基本操作就是插入和查询,其中查询可以完整查询,也可以前缀查询,其中基于前缀查询才是前缀树的灵魂,也是其名字的来源。

## 相关题目
最后给大家提供了两种语言的前缀树模板,大家如果需要用,直接将其封装成标准 API 调用即可。

- [648. 单词替换](https://leetcode-cn.com/problems/replace-words/) (换皮题)
基于前缀树的题目变化通常不大, 使用模板就可以解决。如何知道该使用前缀树优化是一个难点,不过大家只要牢牢记一点即可,那就是**算法的复杂度瓶颈在字符串查找,并且字符串有很多公共前缀,就可以用前缀树优化**

0 comments on commit ad93454

Please sign in to comment.