Skip to content

This instruction will help you to pre-process the Human3.6M dataset

License

Notifications You must be signed in to change notification settings

maudzung/human36m_preprocessing

Repository files navigation

This instruction will help you to pre-process the Human3.6M dataset.

The source code is referred to h36m-fetch repository. However, I used OpenCV to extract images from videos instead of ffmpeg. This leads to a better quality of extracted images (3 times).

Folder structure

    ${ROOT}
    ├──datasets/
    ├──human36m_preprocessing/
        ├──download_all.py
        ├──extract_all.py
        ├──metadata.py
        ├──metadata.xml
        ├──process_all.py
        ├──protocol_1.py
        ├──protocol_1_selected_annos.py
        ├──README.md
        ├──README_from_authors.md
    ├──src/

The full steps are below:

1. Download the dataset from Human3.6m webpage

    python3 download_all.py

2. Extract the downloaded files

    python3 extract_all.py

3. Extract images from original videos and get the full ground-truth

    python3 protocol_1.py

if you want to extract only the annotations of selected joints, you can run the command:

    python3 protocol_1_selected_annos.py

4. Extract images from original videos and get the selected ground-truth

    python3 protocol_1_selected_annos.py

The list of selected keypoints in Human3.6M dataset

    h36m_keypoints = {
        0: 'Hip',
        1: 'RHip',
        2: 'RKnee',
        3: 'RFoot',
        6: 'LHip',
        7: 'LKnee',
        8: 'LFoot',
        12: 'Spine',
        13: 'Neck',
        14: 'Nose',
        15: 'Head',
        17: 'LShoulder',
        18: 'LElbow',
        19: 'LWrist',
        25: 'RShoulder',
        26: 'RElbow',
        27: 'RWrist',
    }

Protocol 1:

  • Training subjects: S1, S5, S6, S7, S8
  • Testing subjects: S9, S11
  • Down-sample from 50Hz to 10Hz for every subjects

Protocol 2:

  • Training subjects: S1, S5, S6, S7, S8, S9
  • Testing subjects: S11
  • Test on every 64th frames in the original videos

Annotations structure

annot_dict = {
    'S1': {
        'action-subaction': {
            'frame': {
                '3d_poses': 1,
                '3d_angles': 2,
                '3d_bboxes': 3,
            },
            'frame': {
                '3d_poses': 1,
                '3d_angles': 2,
                '3d_bboxes': {
                    'camera_1': ['xmin', 'ymin', 'xmax', 'ymax'],
                    'camera_2': ['xmin', 'ymin', 'xmax', 'ymax'],
                },
            },
        },
        'action-subaction_2': {
            'frame': {
                '3d_poses': 1,
                '3d_angles': 2,
                '3d_bboxes': 3,
            },
            'frame': {
                '3d_poses': 1,
                '3d_angles': 2,
                '3d_bboxes': 3,
            }
        }
    }
}

About

This instruction will help you to pre-process the Human3.6M dataset

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages