Skip to content
/ addtree Public

AISTATS2020 Additive Tree-Structured Covariance Function for Conditional Parameter Spaces in Bayesian Optimization

Notifications You must be signed in to change notification settings

maxc01/addtree

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AddTree Covariance Function

dependencies

This project depends on george, numpy, and scipy. george must be compiled manually.

git clone https://github.com/maxc01/george
cd george
python setup.py install

If you are using poetry,

poetry install

examples

synthetic function

cd examples
python addtree_jenatton_small.py

log files will be located in exp_results/addtree/jenatton-small/a-unique-dir. The following figure shows comparison of different algorithms on optimizaing the synthetic function. ./assets/synthetic-function.png

model compression

cd examples
python {{ algo }}_model_compression_multiple.py {{ model_name }} OUTPUT_PATH --pretrained PRETRAINED_PATH --prune_epochs 1

model_name can be “vgg16”, “resnet50” or “resnet56”. algo can be “addtree”, “random” , “tpe” or “smac”.

For example, to compress resnet50 using addtree,

python addtree_model_compression_multiple.py resnet50 OUTPUT_PATH --pretrained PRETRAINED_PATH --prune_epochs 1

The following picture shows comparison of different algorithms on compressing resnet50. ./assets/resnet50-cummax-median-95ci.png

citation

@inproceedings{Ma2020a,
  TITLE = {Additive tree-structured covariance function for conditional parameter spaces in {Bayesian} optimization},
  AUTHOR = {Ma, Xingchen and Blaschko, Matthew B.},
  BOOKTITLE = {Artificial Intelligence and Statistics},
  YEAR = {2020},
}

About

AISTATS2020 Additive Tree-Structured Covariance Function for Conditional Parameter Spaces in Bayesian Optimization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published