Skip to content

Tools for loading video dataset and transforms on video in pytorch. You can directly load video files without preprocessing.

License

Notifications You must be signed in to change notification settings

mbencherif/pytorch-VideoDataset

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pytorch-VideoDataset

Tools for loading video dataset and transforms on video in pytorch. You can directly load video files without preprocessing.

Requirements

  • pytorch
  • torchvision
  • numpy
  • python-opencv
  • PIL

How to use

  1. Place the files datasets.py and transforms.py at your project directory.

  2. Create csv file to declare where your video data are. The format of your csv file should like:

    path
    ~/path/to/video/file1.mp4
    ~/path/to/video/file2.mp4
    ~/path/to/video/file3.mp4
    ~/path/to/video/file4.mp4
    

    if the videos of your dataset are saved as image in folders. The format of your csv file should like:

    path
    ~/path/to/video/folder1/
    ~/path/to/video/folder2/
    ~/path/to/video/folder3/
    ~/path/to/video/folder4/
    
  3. Prepare video datasets and load video to torch.Tensor.

    import torch
    import torchvision
    import datasets
    import transforms
    
    dataset = datasets.VideoDataset(
    	"./data/example_video_file.csv",
        transform=torchvision.transforms.Compose([
            transforms.VideoFilePathToTensor(max_len=50, fps=10, padding_mode='last'),
            transforms.VideoRandomCrop([512, 512]),
            transforms.VideoResize([256, 256]),
        ])
    )
    data_loader = torch.utils.data.DataLoader(dataset, batch_size = 2, shuffle = True)
    for videos in data_loader:
        print(videos.size())

    If the videos of your dataset are saved as image in folders. You can use VideoFolderPathToTensor transfoms rather than VideoFilePathToTensor .

    import torch
    import torchvision
    import datasets
    import transforms
    
    dataset = datasets.VideoDataset(
    	"./data/example_video_folder.csv",
        transform=torchvision.transforms.Compose([
            transforms.VideoFolderPathToTensor(max_len=50, padding_mode='last'),
            transforms.VideoRandomCrop([512, 512]),
            transforms.VideoResize([256, 256]),
        ])
    )
    data_loader = torch.utils.data.DataLoader(dataset, batch_size = 2, shuffle = True)
    for videos in data_loader:
        print(videos.size())
  4. You can use VideoLabelDataset to load both video and label.

    import torch
    import torchvision
    import datasets
    import transforms
    
    dataset = datasets.VideoLabelDataset(
    	"./data/example_video_file_with_label.csv",
        transform=torchvision.transforms.Compose([
            transforms.VideoFilePathToTensor(max_len=50, fps=10, padding_mode='last'),
            transforms.VideoRandomCrop([512, 512]),
            transforms.VideoResize([256, 256]),
        ])
    )
    data_loader = torch.utils.data.DataLoader(dataset, batch_size = 2, shuffle = True)
    for videos, labels in data_loader:
        print(videos.size(), labels)
  5. You can also customize your dataset. It's easy to create your own CustomVideoDataset class and reuse the transforms I provided to transform video path to torch.Tensor and do some preprocessing such as VideoRandomCrop.

Docs

  • datasets.VideoDataset

    Video Dataset for loading video.

    It will output only path of video (neither video file path or video folder path). However, you can load video as torch.Tensor (C x L x H x W). See below for an example of how to read video as torch.Tensor. Your video dataset can be image frames or video files.

    • Parameters

      • csv_file (str): path fo csv file which store path of video file or video folder. The format of csv_file should like:

        # example_video_file.csv   (if the videos of dataset is saved as video file)
        
        path
        ~/path/to/video/file1.mp4
        ~/path/to/video/file2.mp4
        ~/path/to/video/file3.mp4
        ~/path/to/video/file4.mp4
        
        # example_video_folder.csv   (if the videos of dataset is saved as image frames)
        
        path
        ~/path/to/video/folder1/
        ~/path/to/video/folder2/
        ~/path/to/video/folder3/
        ~/path/to/video/folder4/
        
    • Example

      if the videos of dataset is saved as video file.

      import torch
      from datasets import VideoDataset
      import transforms
      dataset = VideoDataset(
          "example_video_file.csv",
          transform = transforms.VideoFilePathToTensor()  # See more options at transforms.py
      )
      data_loader = torch.utils.data.DataLoader(dataset, batch_size = 1, shuffle = True)
      for videos in data_loader:
      	print(videos.size())

      if the video of dataset is saved as frames in video folder. The tree like: (The names of the images are arranged in ascending order of frames)

      ~/path/to/video/folder1
      ├── frame-001.jpg
      ├── frame-002.jpg
      ├── frame-003.jpg
      └── frame-004.jpg
      import torch
      from datasets import VideoDataset
      import transforms
      dataset = VideoDataset(
          "example_video_folder.csv",
          transform = transforms.VideoFolderPathToTensor()  # See more options at transforms.py
      )
      data_loader = torch.utils.data.DataLoader(dataset, batch_size = 1, shuffle = True)
      for videos in data_loader:
      	print(videos.size())
  • datasets.VideoLabelDataset

    Dataset Class for Loading Video with label.

    It will output path and label. However, you can load video as torch.Tensor (C x L x H x W). See below for an example of how to read video as torch.Tensor.

    You can load tensor from video file or video folder by using the same way as VideoDataset.

    • Parameters

      • csv_file (str): path fo csv file which store path and label of video file (or video folder). The format of csv_file should like:

        path, label
        ~/path/to/video/file1.mp4, 0
        ~/path/to/video/file2.mp4, 1
        ~/path/to/video/file3.mp4, 0
        ~/path/to/video/file4.mp4, 2
        
    • Example

      import torch
      import transforms
      dataset = VideoDataset(
          "example_video_file_with_label.csv",
          transform = transforms.VideoFilePathToTensor()  # See more options at transforms.py
      )
      data_loader = torch.utils.data.DataLoader(dataset, batch_size = 1, shuffle = True)
      for videos, labels in data_loader:
          print(videos.size())

All transforms at here can be composed with torchvision.transforms.Compose().

  • transforms.VideoFilePathToTensor

    load video at given file path to torch.Tensor (C x L x H x W, C = 3).

    • Parameters
      • max_len (int): Maximum output time depth (L <= max_len). Default is None. If it is set to None, it will output all frames.
      • fps (int): sample frame per seconds. It must lower than or equal the origin video fps. Defaults to None.
      • padding_mode (str): Type of padding. Default to None. Only available when max_len is not None.
        • None: won't padding, video length is variable.
        • 'zero': padding the rest empty frames to zeros.
        • 'last': padding the rest empty frames to the last frame.
  • transforms.VideoFolderPathToTensor

    load video at given folder path to torch.Tensor (C x L x H x W).

    • Parameters
      • max_len (int): Maximum output time depth (L <= max_len). Default is None. If it is set to None, it will output all frames.
      • padding_mode (str): Type of padding. Default to None. Only available when max_len is not None.
        • None: won't padding, video length is variable.
        • 'zero': padding the rest empty frames to zeros.
        • 'last': padding the rest empty frames to the last frame.
  • transforms.VideoResize

    resize video tensor (C x L x H x W) to (C x L x h x w).

    • Parameters
      • size (sequence): Desired output size. size is a sequence like (H, W), output size will matched to this.
      • interpolation (int, optional): Desired interpolation. Default is PIL.Image.BILINEAR
  • transforms.VideoRandomCrop

    Crop the given Video Tensor (C x L x H x W) at a random location.

    • Parameters
      • size (sequence): Desired output size like (h, w).
  • transforms.VideoCenterCrop

    Crops the given video tensor (C x L x H x W) at the center.

    • Parameters
      • size (sequence): Desired output size of the crop like (h, w).
  • transforms.VideoRandomHorizontalFlip

    Horizontal flip the given video tensor (C x L x H x W) randomly with a given probability.

    • Parameters
      • p (float): probability of the video being flipped. Default value is 0.5.
  • transforms.VideoRandomVerticalFlip

    Vertical flip the given video tensor (C x L x H x W) randomly with a given probability.

    • Parameters
      • p (float): probability of the video being flipped. Default value is 0.5.
  • transforms.VideoGrayscale

    Convert video (C x L x H x W) to grayscale (C' x L x H x W, C' = 1 or 3)

    • Parameters
      • num_output_channels (int): (1 or 3) number of channels desired for output video.

About

Tools for loading video dataset and transforms on video in pytorch. You can directly load video files without preprocessing.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%