Using outlier detection and entity recognition to improve a crowdsourcing biocuration system. This repo contains three parts:
- Set environment
- Conduct analyses for Markteria
- Start the improved biocuration tool
It needs annotators' biocuration results in Markteria when generating the table in paper.
-
Go to the root of this repository
-
Create a file,
option.json
, for server options; the field for google could be referred to edit-google-spreadsheet on npm
{
"server": {
"host": "",
"port": ""
},
"google": {
"oauth2": {
"client_id": "",
"client_secret": "",
"refresh_token": ""
},
"v1": {
"spreadsheetId": "",
"worksheetId": {
"enroll": "",
"stats": ""
}
}
}
}
- Create essential folders
$ mkdir -p theme/v1/res/verify/NER theme/v2/res theme/v2/src/mark-result
- Install modules
$ npm i
# or
$ yarn
- Go to the working directory
$ cd [root of this repository]/theme/v1/
- Upload the biocuration results (players' logs in Markteria)
$ mkdir -p src/mark-result/expert src/mark-result/subject src/words tools
# replace the file name of each annotator's log with his own experiment ID (such as '_dirty')
# upload the log file to 'src/mark-result/expert/' directory if an annotator is expert; otherwise, to 'src/mark-result/subject/' directory
# upload the stop word list to 'src/words/stopWords.json'
# upload all the biocuration results of automatic bioNER tools to 'tools/[bioNER tool name]/predict.mia.json'
- Create a soft link pointing to the article box in Markteria
$ ln -s [root of Markteria repository]/world/[world name, such as 'NER' or 'PPI']/res/box/ src/
- Upload the preprocessed resources
$ mkdir -p res/words res/world/box
# upload the gold-standard answer for the articles to 'res/'
# each word in the articles was categorized, and the results were put into 'res/words/'
# each article was preprocessed, and the results as well as the information of annototors were put into 'res/world/'
- Build the benchmark (sentences annotated by at least 3 amateur annotators)
$ cd bin/
# parse all the amateur annotators' biocuration results (without domain expert), the output is generated in '../res/mark-result.json'
$ ./ans -a parse-mark-result -b _dirty -b _tseng
# build benchmark, the output is generated in '../res/benchmark-stcs.json'
$ ./ans -a build-benchmark
# the corresponding options for 'ans'
# -----------------------------------
# Usage: lsc ans.ls
# -a, --action=ARG specify operation
# -b, --blacklist=ARG+ push subject id in blacklist
# -f, --minFreq=ARG set minimum threshold of word frequency in each article to be extracted
# -F, --fixedSupp set for integrating results exactly satisfy the required support (default: more than minimum support)
# -h, --help show this help
# -s, --toSpreadsheet send verification results to google spreadsheet (default: `false`)
# -t, --maxTops=ARG set maximum amounts of top frequent words in each article to be extracted
# -T, --theme=ARG specify theme (default: `NER`)
- Verify the biocuration results
- amateur and expert
# parse all the amateur and expert annotators' biocuration results
$ ./ans -a parse-mark-result
# verify the individual biocuration results on benchmark, the average performance would be shown on the command line
# the output correspond to Table Comparison of Markteria with automatic NER tools - Average of subjects with experts in the paper
$ ./ans -a verify-benchmark
# verify the aggregated biocuration results on benchmark, the output is generated in '../res/verify/NER/verification.json'
$ ./ans -a verify
- amateur only
# parse all the amateur annotators' biocuration results
$ ./ans -a parse-mark-result -b _dirty -b _tseng
# verify the individual biocuration results on benchmark, the average performance would be shown on the command line
# the output correspond to Table Comparison of Markteria with automatic NER tools - Average of subjects without experts in the paper
$ ./ans -a verify-benchmark
# verify the aggregated biocuration results on benchmark, the output is generated in '../res/verify/NER/verification.json'
# the output['crowdSourcing']['3']['0.5'] correspond to Table Comparison of Markteria with automatic NER tools - Markteria without experts in the paper
$ ./ans -a verify -b _dirty -b _tseng
- expert only
# parse all the expert annotators' biocuration results
$ ./ans -a parse-mark-result -b [amateur A] -b [amateur B] ......
# verify the individual biocuration results on benchmark, the average performance would be shown on the command line
# the output correspond to Table Comparison of Markteria with automatic NER tools - Average of experts only in the paper
$ ./ans -a verify-benchmark
# verify the aggregated biocuration results on benchmark, the output is generated in '../res/verify/NER/verification.json'
$ ./ans -a verify -b [amateur A] -b [amateur B] ......
- automatic bioNER tools
# the output correspond to Table Comparison of Markteria with automatic NER tools - Automatic tools
# verify the biocuration results of 'GENIA_tagger' on benchmark
$ ./hybrid-tools -t GENIA_tagger -b
# verify the biocuration results of 'GNormPlus' on benchmark
$ ./hybrid-tools -t GNormPlus -b
# verify the biocuration results of 'NLProt' on benchmark
$ ./hybrid-tools -t NLProt -b
# verify the biocuration results of 'Neji' on benchmark
$ ./hybrid-tools -t Neji -b
# verify the biocuration results of 'Swiss_Prot' on benchmark
$ ./hybrid-tools -t Swiss_Prot -b
# the corresponding options for 'hybrid-tools'
# --------------------------------------------
# Usage: lsc hybrid-tools.ls
# -b, --benchmark verify words in benchmark sentences
# -c, --minConf=ARG specify the minimum confidence (default: 1)
# -h, --help show this help
# -t, --tools=ARG+ specify automatic tools (default: GENIA_tagger, GNormPlus, NLProt, Neji, Swiss_Prot)
- Compute the priori-quality
- amateur and expert
# parse all the amateur and expert annotators' biocuration results
$ ./ans -a parse-mark-result
# compute the personal priori-quality for all the amateur and expert annotators, the output is generated in '../res/verify/NER/labeler-score.json'
$ ./labeler-score
# the corresponding options for 'labeler-score'
# ---------------------------------------------
# Usage: lsc labeler-score.ls
# -h, --help show this help
# -s, --minSupp=ARG set minimum support of sentences (default: `4`)
# -T, --theme=ARG specify theme (default: `NER`)
- amateur only
# parse all the amateur annotators' biocuration results
$ ./ans -a parse-mark-result -b _dirty -b _tseng
# compute the personal priori-quality for all the amateur annotators, the output is generated in '../res/verify/NER/labeler-score.json'
$ ./labeler-score
- Carry out the simulation
# simulate the biocuration behavior with parameters in './.sim.opt.ls', the output is generated in '../res/verify/NER/sim-verification.json'
$ ./sim -p 32
# simulate the quantity-quality pairs which achieve an expert biocuration level, the output is generated in '../res/verify/NER/quantity-quality.json'
$ node --max_old_space_size=8192 /usr/local/bin/lsc sim -p 32 -q
# the corresponding options for 'sim'
# -----------------------------------
# Usage: lsc sim.ls
# -h, --help show this help
# -p, --processor=ARG set numbers of processor (default: 4)
# -q, --qqPlot simulate for quantity-quality plot (default: `false`)
# -t, --theme=ARG specify theme (default: `NER`)
- Build corpus
# take the biocuration results of automatic bioNER tools as reference, the output is generated in '../res/verify/NER/hybrid-tools-rlt.json'
$ cd [root of this repository]/theme/v1/bin/
$ ./hybrid-tools -t GENIA_tagger -t GNormPlus -t NLProt -t Neji -t Swiss_Prot
# build corpus, the output is generated in '../res/db.json'
$ cd [root of this repository]/theme/v2/bin/
$ ./build-db
- Start the server
$ cd [root of this repository]/
$ npm start
# or
$ yarn start
# the individual biocuration result would be generated in 'theme/v2/src/mark-result/'