forked from studywolf/blog
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
updated orientation scripts with blog post rewrite
- Loading branch information
Showing
3 changed files
with
294 additions
and
55 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
''' | ||
Copyright (C) 2018 Travis DeWolf | ||
This program is free software: you can redistribute it and/or modify | ||
it under the terms of the GNU General Public License as published by | ||
the Free Software Foundation, either version 3 of the License, or | ||
(at your option) any later version. | ||
This program is distributed in the hope that it will be useful, | ||
but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
GNU General Public License for more details. | ||
You should have received a copy of the GNU General Public License | ||
along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
''' | ||
import numpy as np | ||
|
||
from abr_control.arms import ur5 as arm | ||
from abr_control.interfaces import VREP | ||
from abr_control.utils import transformations | ||
|
||
|
||
# initialize our robot config | ||
robot_config = arm.Config(use_cython=True) | ||
|
||
# create our interface | ||
interface = VREP(robot_config, dt=.005) | ||
interface.connect() | ||
|
||
# specify which parameters [x, y, z, alpha, beta, gamma] to control | ||
# NOTE: needs to be an array to properly select elements of J and u_task | ||
ctrlr_dof = np.array([True, True, True, True, True, True]) | ||
|
||
# control gains | ||
kp = 300 | ||
ko = 300 | ||
kv = np.sqrt(kp+ko) * 1.5 | ||
|
||
orientations = [ | ||
[0, 0, 0], | ||
[np.pi/4, np.pi/4, np.pi/4], | ||
[-np.pi/4, -np.pi/4, np.pi/2], | ||
[0, 0, 0], | ||
] | ||
positions =[ | ||
[0.15, -0.1, 0.6], | ||
[-.15, 0.0, .7], | ||
[.2, .2, .6], | ||
[0.15, -0.1, 0.6] | ||
] | ||
|
||
try: | ||
print('\nSimulation starting...\n') | ||
count = 0 | ||
index = 0 | ||
while 1: | ||
# get arm feedback | ||
feedback = interface.get_feedback() | ||
hand_xyz = robot_config.Tx('EE', feedback['q']) | ||
|
||
if (count % 200) == 0: | ||
# change target once every simulated second | ||
if index >= len(orientations): | ||
break | ||
interface.set_orientation('target', orientations[index]) | ||
interface.set_xyz('target', positions[index]) | ||
index += 1 | ||
|
||
target = np.hstack([ | ||
interface.get_xyz('target'), | ||
interface.get_orientation('target')]) | ||
|
||
# set the block to be the same orientation as end-effector | ||
R_e = robot_config.R('EE', feedback['q']) | ||
EA_e = transformations.euler_from_matrix(R_e, axes='rxyz') | ||
interface.set_orientation('object', EA_e) | ||
|
||
# calculate the Jacobian for the end effectora | ||
# and isolate relevate dimensions | ||
J = robot_config.J('EE', q=feedback['q'])[ctrlr_dof] | ||
|
||
# calculate the inertia matrix in task space | ||
M = robot_config.M(q=feedback['q']) | ||
|
||
# calculate the inertia matrix in task space | ||
M_inv = np.linalg.inv(M) | ||
Mx_inv = np.dot(J, np.dot(M_inv, J.T)) | ||
if np.linalg.det(Mx_inv) != 0: | ||
# do the linalg inverse if matrix is non-singular | ||
# because it's faster and more accurate | ||
Mx = np.linalg.inv(Mx_inv) | ||
else: | ||
# using the rcond to set singular values < thresh to 0 | ||
# singular values < (rcond * max(singular_values)) set to 0 | ||
Mx = np.linalg.pinv(Mx_inv, rcond=.005) | ||
|
||
u_task = np.zeros(6) # [x, y, z, alpha, beta, gamma] | ||
|
||
# calculate position error | ||
u_task[:3] = -kp * (hand_xyz - target[:3]) | ||
|
||
# Method 1 ------------------------------------------------------------ | ||
# | ||
# transform the orientation target into a quaternion | ||
q_d = transformations.unit_vector( | ||
transformations.quaternion_from_euler( | ||
target[3], target[4], target[5], axes='rxyz')) | ||
|
||
# get the quaternion for the end effector | ||
q_e = transformations.unit_vector( | ||
transformations.quaternion_from_matrix( | ||
robot_config.R('EE', feedback['q']))) | ||
# calculate the rotation from the end-effector to target orientation | ||
q_r = transformations.quaternion_multiply( | ||
q_d, transformations.quaternion_conjugate(q_e)) | ||
u_task[3:] = q_r[1:] * np.sign(q_r[0]) | ||
|
||
|
||
# Method 2 ------------------------------------------------------------ | ||
# From (Caccavale et al, 1997) Section IV - Quaternion feedback ------- | ||
# | ||
# get rotation matrix for the end effector orientation | ||
# R_EE = robot_config.R('EE', feedback['q']) | ||
# # get rotation matrix for the target orientation | ||
# R_d = transformations.euler_matrix( | ||
# target[3], target[4], target[5], axes='rxyz')[:3, :3] | ||
# R_ed = np.dot(R_EE.T, R_target) # eq 24 | ||
# q_e = transformations.quaternion_from_matrix(R_ed) | ||
# q_e = transformations.unit_vector(q_e) | ||
# u_task[3:] = np.dot(R_EE, q_e[1:]) # eq 34 | ||
|
||
|
||
# Method 3 ------------------------------------------------------------ | ||
# From (Caccavale et al, 1997) Section V - Angle/axis feedback -------- | ||
# | ||
# R_EE = robot_config.R('EE', feedback['q']) | ||
# # get rotation matrix for the target orientation | ||
# R_d = transformations.euler_matrix( | ||
# target[3], target[4], target[5], axes='rxyz')[:3, :3] | ||
# R = np.dot(R_target, R_EE.T) # eq 44 | ||
# q_e = transformations.quaternion_from_matrix(R) | ||
# q_e = transformations.unit_vector(q_e) | ||
# u_task[3:] = 2 * q_e[0] * q_e[1:] # eq 45 | ||
|
||
|
||
# Method 4 ------------------------------------------------------------- | ||
# From (Yuan, 1988) and (Nakanishi et al, 2008) ------------------------ | ||
# NOTE: This implementation is not working properly -------------------- | ||
# | ||
# # transform the orientation target into a quaternion | ||
# q_d = transformations.unit_vector( | ||
# transformations.quaternion_from_euler( | ||
# target[3], target[4], target[5], axes='rxyz')) | ||
# # get the quaternion for the end effector | ||
# q_e = transformations.unit_vector( | ||
# transformations.quaternion_from_matrix( | ||
# robot_config.R('EE', feedback['q']))) | ||
# | ||
# # given r = [r1, r2, r3] | ||
# # r^x = [[0, -r3, r2], [r3, 0, -r1], [-r2, r1, 0]] | ||
# S = np.array([ | ||
# [0.0, -q_d[2], q_d[1]], | ||
# [q_d[2], 0.0, -q_d[0]], | ||
# [-q_d[1], q_d[0], 0.0]]) | ||
# | ||
# # calculate the difference between q_e and q_d | ||
# # from (Nakanishi et al, 2008). NOTE: the sign of the last term | ||
# # is different from (Yuan, 1998) to account for Euler angles in | ||
# # world coordinates instead of local coordinates. | ||
# # dq = (w_d * [x, y, z] - w * [x_d, y_d, z_d] - | ||
# # [x_d, y_d, z_d]^x * [x, y, z]) | ||
# # the sign of quaternion that moves between q_e and q_d | ||
# u_task[3:] = -(q_d[0] * q_e[1:] - q_e[0] * q_d[1:] + | ||
# np.dot(S, q_e[1:])) | ||
# | ||
# --------------------------------------------------------------------- | ||
|
||
u_task[3:] *= ko # scale orientation signal by orientation gain | ||
# remove uncontrolled dimensions from u_task | ||
u_task = u_task[ctrlr_dof] | ||
|
||
# transform from operational space to torques | ||
# add in velocity and gravity compensation in joint space | ||
u = (np.dot(J.T, np.dot(Mx, u_task)) - | ||
kv * np.dot(M, feedback['dq']) - | ||
robot_config.g(q=feedback['q'])) | ||
|
||
# apply the control signal, step the sim forward | ||
interface.send_forces(u) | ||
count += 1 | ||
|
||
finally: | ||
interface.disconnect() |
This file was deleted.
Oops, something went wrong.