Skip to content

Fast, flexible extraction of moral information from textual input data.

License

Notifications You must be signed in to change notification settings

medianeuroscience/emfdscore

Repository files navigation

eMFDscore: Extended Moral Foundation Dictionary Scoring for Python

made-with-python Open Source Love png2

eMFDscore is a library for the fast and flexible extraction of various moral information metrics from textual input data. eMFDscore is built on spaCy for faster execution and performs minimal preprocessing consisting of tokenization, syntactic dependency parsing, lower-casing, and stopword/punctuation/whitespace removal. eMFDscore lets users score documents with multiple Moral Foundations Dictionaries, provides various metrics for analyzing moral information, and extracts moral patient, agent, and attribute words related to entities.

When using eMFDscore, please consider giving this repository a star (top right corner) and citing the following article:
Hopp, F. R., Fisher, J. T., Cornell, D., Huskey, R., & Weber, R. (2020). The extended Moral Foundations Dictionary (eMFD): Development and applications of a crowd-sourced approach to extracting moral intuitions from text. Behavior Research Methods, https://doi.org/10.3758/s13428-020-01433-0

eMFDscore is dual-licensed under GNU GENERAL PUBLIC LICENSE 3.0, which permits the non-commercial use, distribution, and modification of the eMFDscore package. Commercial use of the eMFDscore requires an application.

Install

eMFDscore requires a Python installation (v3.7+). If your machine does not have Python installed, we recommend installing Python by downloading and installing either Anaconda or Miniconda for your OS.

For best practises, we recommend installing eMFDscore into a virtual conda environment. Hence, you should first create a virtual environment by executing the following command in your terminal:

$ conda create -n emfd python=3.7

Once Anaconda/Miniconda is installed activate the env via:

$ source activate emfd

Next, you must install spaCy, which is the main natural language processing backend that eMFDscore is built on:

$ conda install -c conda-forge spacy
$ python -m spacy download en_core_web_sm

Finally, you can install eMFDscore by copying, pasting, and executing the following command:

pip install https://github.com/medianeuroscience/emfdscore/archive/master.zip

eMFDscore in Google Colaboratory

eMFDscore can also be run in google colab. All you need to do is add these lines to the beginning of your notebook, execute them, and then restart your runtime:

!pip install -U pip setuptools wheel
!pip install -U spacy
!python -m spacy download en_core_web_sm
!pip install git+https://github.com/medianeuroscience/emfdscore.git

You can then use eMFDscore as a python library as documented in our tutorial.

Usage

Please refer to this tutorial to learn how to use eMFDscore.

If you are using the eMFD within the Global Database of Events, Language, and Tone (GDELT) please read the following documentation.

For using the eMFD on shorter texts (e.g., tweets and news headlines), we suggest to apply the eMFD in a FrameAxis.

Applications

The eMFD has been used in the following applications (ordered by date of publication):

About

Fast, flexible extraction of moral information from textual input data.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published