forked from PaddlePaddle/FastDeploy
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Serving] add ocr serving example (PaddlePaddle#627)
* add ocr serving example * 1 1 * Add files via upload * Update README.md * Delete ocr_pipeline.png * Add files via upload * Delete ocr_pipeline.png * Add files via upload * 1 1 * 1 1 * Update README.md * 1 1 * fix codestyle * fix codestyle Co-authored-by: Jason <[email protected]> Co-authored-by: heliqi <[email protected]>
- Loading branch information
1 parent
c721773
commit 9503639
Showing
17 changed files
with
1,188 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
# PP-OCR服务化部署示例 | ||
|
||
## 介绍 | ||
本文介绍了使用FastDeploy搭建OCR文字识别服务的方法. | ||
|
||
服务端必须在docker内启动,而客户端不是必须在docker容器内. | ||
|
||
**本文所在路径($PWD)下的models里包含模型的配置和代码(服务端会加载模型和代码以启动服务), 需要将其映射到docker中使用.** | ||
|
||
OCR由det(检测)、cls(分类)和rec(识别)三个模型组成. | ||
|
||
服务化部署串联的示意图如下图所示,其中`pp_ocr`串联了`det_preprocess`、`det_runtime`和`det_postprocess`,`cls_pp`串联了`cls_runtime`和`cls_postprocess`,`rec_pp`串联了`rec_runtime`和`rec_postprocess`. | ||
|
||
特别的是,在`det_postprocess`中会多次调用`cls_pp`和`rec_pp`服务,来实现对检测结果(多个框)进行分类和识别,,最后返回给用户最终的识别结果。 | ||
|
||
<p align="center"> | ||
<br> | ||
<img src='./ppocr.png'"> | ||
<br> | ||
<p> | ||
|
||
## 使用 | ||
### 1. 服务端 | ||
#### 1.1 Docker | ||
```bash | ||
# 下载仓库代码 | ||
git clone https://github.com/PaddlePaddle/FastDeploy.git | ||
cd FastDeploy/examples/vision/ocr/PP-OCRv3/serving/ | ||
|
||
# 下载模型,图片和字典文件 | ||
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar | ||
tar xvf ch_PP-OCRv3_det_infer.tar && mv ch_PP-OCRv3_det_infer 1 | ||
mv 1/inference.pdiparams 1/model.pdiparams && mv 1/inference.pdmodel 1/model.pdmodel | ||
mv 1 models/det_runtime/ && rm -rf ch_PP-OCRv3_det_infer.tar | ||
|
||
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar | ||
tar xvf ch_ppocr_mobile_v2.0_cls_infer.tar && mv ch_ppocr_mobile_v2.0_cls_infer 1 | ||
mv 1/inference.pdiparams 1/model.pdiparams && mv 1/inference.pdmodel 1/model.pdmodel | ||
mv 1 models/cls_runtime/ && rm -rf ch_ppocr_mobile_v2.0_cls_infer.tar | ||
|
||
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar | ||
tar xvf ch_PP-OCRv3_rec_infer.tar && mv ch_PP-OCRv3_rec_infer 1 | ||
mv 1/inference.pdiparams 1/model.pdiparams && mv 1/inference.pdmodel 1/model.pdmodel | ||
mv 1 models/rec_runtime/ && rm -rf ch_PP-OCRv3_rec_infer.tar | ||
|
||
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt | ||
mv ppocr_keys_v1.txt models/rec_postprocess/1/ | ||
|
||
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg | ||
|
||
|
||
docker pull paddlepaddle/fastdeploy:0.6.0-gpu-cuda11.4-trt8.4-21.10 | ||
docker run -dit --net=host --name fastdeploy --shm-size="1g" -v $PWD:/ocr_serving paddlepaddle/fastdeploy:0.6.0-gpu-cuda11.4-trt8.4-21.10 bash | ||
docker exec -it -u root fastdeploy bash | ||
``` | ||
|
||
#### 1.2 安装(在docker内) | ||
```bash | ||
ldconfig | ||
apt-get install libgl1 | ||
``` | ||
|
||
#### 1.3 启动服务端(在docker内) | ||
```bash | ||
fastdeployserver --model-repository=/ocr_serving/models | ||
``` | ||
|
||
参数: | ||
- `model-repository`(required): 整套模型streaming_pp_tts存放的路径. | ||
- `http-port`(optional): HTTP服务的端口号. 默认: `8000`. 本示例中未使用该端口. | ||
- `grpc-port`(optional): GRPC服务的端口号. 默认: `8001`. | ||
- `metrics-port`(optional): 服务端指标的端口号. 默认: `8002`. 本示例中未使用该端口. | ||
|
||
|
||
### 2. 客户端 | ||
#### 2.1 安装 | ||
```bash | ||
pip3 install tritonclient[all] | ||
``` | ||
|
||
#### 2.2 发送请求 | ||
```bash | ||
python3 client.py | ||
``` | ||
|
||
## 配置修改 | ||
|
||
当前默认配置在GPU上运行, 如果要在CPU或其他推理引擎上运行。 需要修改`models/runtime/config.pbtxt`中配置,详情请参考[配置文档](../../../../../serving/docs/zh_CN/model_configuration.md) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
import logging | ||
import numpy as np | ||
import time | ||
from typing import Optional | ||
import cv2 | ||
import json | ||
|
||
from tritonclient import utils as client_utils | ||
from tritonclient.grpc import InferenceServerClient, InferInput, InferRequestedOutput, service_pb2_grpc, service_pb2 | ||
|
||
LOGGER = logging.getLogger("run_inference_on_triton") | ||
|
||
|
||
class SyncGRPCTritonRunner: | ||
DEFAULT_MAX_RESP_WAIT_S = 120 | ||
|
||
def __init__( | ||
self, | ||
server_url: str, | ||
model_name: str, | ||
model_version: str, | ||
*, | ||
verbose=False, | ||
resp_wait_s: Optional[float]=None, ): | ||
self._server_url = server_url | ||
self._model_name = model_name | ||
self._model_version = model_version | ||
self._verbose = verbose | ||
self._response_wait_t = self.DEFAULT_MAX_RESP_WAIT_S if resp_wait_s is None else resp_wait_s | ||
|
||
self._client = InferenceServerClient( | ||
self._server_url, verbose=self._verbose) | ||
error = self._verify_triton_state(self._client) | ||
if error: | ||
raise RuntimeError( | ||
f"Could not communicate to Triton Server: {error}") | ||
|
||
LOGGER.debug( | ||
f"Triton server {self._server_url} and model {self._model_name}:{self._model_version} " | ||
f"are up and ready!") | ||
|
||
model_config = self._client.get_model_config(self._model_name, | ||
self._model_version) | ||
model_metadata = self._client.get_model_metadata(self._model_name, | ||
self._model_version) | ||
LOGGER.info(f"Model config {model_config}") | ||
LOGGER.info(f"Model metadata {model_metadata}") | ||
|
||
self._inputs = {tm.name: tm for tm in model_metadata.inputs} | ||
self._input_names = list(self._inputs) | ||
self._outputs = {tm.name: tm for tm in model_metadata.outputs} | ||
self._output_names = list(self._outputs) | ||
self._outputs_req = [ | ||
InferRequestedOutput(name) for name in self._outputs | ||
] | ||
|
||
def Run(self, inputs): | ||
""" | ||
Args: | ||
inputs: list, Each value corresponds to an input name of self._input_names | ||
Returns: | ||
results: dict, {name : numpy.array} | ||
""" | ||
infer_inputs = [] | ||
for idx, data in enumerate(inputs): | ||
infer_input = InferInput(self._input_names[idx], data.shape, | ||
"UINT8") | ||
infer_input.set_data_from_numpy(data) | ||
infer_inputs.append(infer_input) | ||
|
||
results = self._client.infer( | ||
model_name=self._model_name, | ||
model_version=self._model_version, | ||
inputs=infer_inputs, | ||
outputs=self._outputs_req, | ||
client_timeout=self._response_wait_t, ) | ||
results = {name: results.as_numpy(name) for name in self._output_names} | ||
return results | ||
|
||
def _verify_triton_state(self, triton_client): | ||
if not triton_client.is_server_live(): | ||
return f"Triton server {self._server_url} is not live" | ||
elif not triton_client.is_server_ready(): | ||
return f"Triton server {self._server_url} is not ready" | ||
elif not triton_client.is_model_ready(self._model_name, | ||
self._model_version): | ||
return f"Model {self._model_name}:{self._model_version} is not ready" | ||
return None | ||
|
||
|
||
if __name__ == "__main__": | ||
model_name = "pp_ocr" | ||
model_version = "1" | ||
url = "localhost:9001" | ||
runner = SyncGRPCTritonRunner(url, model_name, model_version) | ||
im = cv2.imread("12.jpg") | ||
im = np.array([im, ]) | ||
for i in range(1): | ||
result = runner.Run([im, ]) | ||
batch_texts = result['rec_texts'] | ||
batch_scores = result['rec_scores'] | ||
for i_batch in range(len(batch_texts)): | ||
texts = batch_texts[i_batch] | ||
scores = batch_scores[i_batch] | ||
for i_box in range(len(texts)): | ||
print('text=', texts[i_box].decode('utf-8'), ' score=', | ||
scores[i_box]) |
105 changes: 105 additions & 0 deletions
105
examples/vision/ocr/PP-OCRv3/serving/models/cls_postprocess/1/model.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import json | ||
import numpy as np | ||
import time | ||
|
||
import fastdeploy as fd | ||
|
||
# triton_python_backend_utils is available in every Triton Python model. You | ||
# need to use this module to create inference requests and responses. It also | ||
# contains some utility functions for extracting information from model_config | ||
# and converting Triton input/output types to numpy types. | ||
import triton_python_backend_utils as pb_utils | ||
|
||
|
||
class TritonPythonModel: | ||
"""Your Python model must use the same class name. Every Python model | ||
that is created must have "TritonPythonModel" as the class name. | ||
""" | ||
|
||
def initialize(self, args): | ||
"""`initialize` is called only once when the model is being loaded. | ||
Implementing `initialize` function is optional. This function allows | ||
the model to intialize any state associated with this model. | ||
Parameters | ||
---------- | ||
args : dict | ||
Both keys and values are strings. The dictionary keys and values are: | ||
* model_config: A JSON string containing the model configuration | ||
* model_instance_kind: A string containing model instance kind | ||
* model_instance_device_id: A string containing model instance device ID | ||
* model_repository: Model repository path | ||
* model_version: Model version | ||
* model_name: Model name | ||
""" | ||
# You must parse model_config. JSON string is not parsed here | ||
self.model_config = json.loads(args['model_config']) | ||
print("model_config:", self.model_config) | ||
|
||
self.input_names = [] | ||
for input_config in self.model_config["input"]: | ||
self.input_names.append(input_config["name"]) | ||
print("postprocess input names:", self.input_names) | ||
|
||
self.output_names = [] | ||
self.output_dtype = [] | ||
for output_config in self.model_config["output"]: | ||
self.output_names.append(output_config["name"]) | ||
dtype = pb_utils.triton_string_to_numpy(output_config["data_type"]) | ||
self.output_dtype.append(dtype) | ||
print("postprocess output names:", self.output_names) | ||
self.postprocessor = fd.vision.ocr.ClassifierPostprocessor() | ||
|
||
def execute(self, requests): | ||
"""`execute` must be implemented in every Python model. `execute` | ||
function receives a list of pb_utils.InferenceRequest as the only | ||
argument. This function is called when an inference is requested | ||
for this model. Depending on the batching configuration (e.g. Dynamic | ||
Batching) used, `requests` may contain multiple requests. Every | ||
Python model, must create one pb_utils.InferenceResponse for every | ||
pb_utils.InferenceRequest in `requests`. If there is an error, you can | ||
set the error argument when creating a pb_utils.InferenceResponse. | ||
Parameters | ||
---------- | ||
requests : list | ||
A list of pb_utils.InferenceRequest | ||
Returns | ||
------- | ||
list | ||
A list of pb_utils.InferenceResponse. The length of this list must | ||
be the same as `requests` | ||
""" | ||
responses = [] | ||
for request in requests: | ||
infer_outputs = pb_utils.get_input_tensor_by_name( | ||
request, self.input_names[0]) | ||
infer_outputs = infer_outputs.as_numpy() | ||
results = self.postprocessor.run([infer_outputs]) | ||
out_tensor_0 = pb_utils.Tensor(self.output_names[0], | ||
np.array(results[0])) | ||
out_tensor_1 = pb_utils.Tensor(self.output_names[1], | ||
np.array(results[1])) | ||
inference_response = pb_utils.InferenceResponse( | ||
output_tensors=[out_tensor_0, out_tensor_1]) | ||
responses.append(inference_response) | ||
return responses | ||
|
||
def finalize(self): | ||
"""`finalize` is called only once when the model is being unloaded. | ||
Implementing `finalize` function is optional. This function allows | ||
the model to perform any necessary clean ups before exit. | ||
""" | ||
print('Cleaning up...') |
30 changes: 30 additions & 0 deletions
30
examples/vision/ocr/PP-OCRv3/serving/models/cls_postprocess/config.pbtxt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
name: "cls_postprocess" | ||
backend: "python" | ||
max_batch_size: 128 | ||
input [ | ||
{ | ||
name: "POST_INPUT_0" | ||
data_type: TYPE_FP32 | ||
dims: [ 2 ] | ||
} | ||
] | ||
|
||
output [ | ||
{ | ||
name: "POST_OUTPUT_0" | ||
data_type: TYPE_INT32 | ||
dims: [ 1 ] | ||
}, | ||
{ | ||
name: "POST_OUTPUT_1" | ||
data_type: TYPE_FP32 | ||
dims: [ 1 ] | ||
} | ||
] | ||
|
||
instance_group [ | ||
{ | ||
count: 1 | ||
kind: KIND_CPU | ||
} | ||
] |
54 changes: 54 additions & 0 deletions
54
examples/vision/ocr/PP-OCRv3/serving/models/cls_pp/config.pbtxt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
name: "cls_pp" | ||
platform: "ensemble" | ||
max_batch_size: 128 | ||
input [ | ||
{ | ||
name: "x" | ||
data_type: TYPE_FP32 | ||
dims: [ 3, -1, -1 ] | ||
} | ||
] | ||
output [ | ||
{ | ||
name: "cls_labels" | ||
data_type: TYPE_INT32 | ||
dims: [ 1 ] | ||
}, | ||
{ | ||
name: "cls_scores" | ||
data_type: TYPE_FP32 | ||
dims: [ 1 ] | ||
} | ||
] | ||
ensemble_scheduling { | ||
step [ | ||
{ | ||
model_name: "cls_runtime" | ||
model_version: 1 | ||
input_map { | ||
key: "x" | ||
value: "x" | ||
} | ||
output_map { | ||
key: "softmax_0.tmp_0" | ||
value: "infer_output" | ||
} | ||
}, | ||
{ | ||
model_name: "cls_postprocess" | ||
model_version: 1 | ||
input_map { | ||
key: "POST_INPUT_0" | ||
value: "infer_output" | ||
} | ||
output_map { | ||
key: "POST_OUTPUT_0" | ||
value: "cls_labels" | ||
} | ||
output_map { | ||
key: "POST_OUTPUT_1" | ||
value: "cls_scores" | ||
} | ||
} | ||
] | ||
} |
Oops, something went wrong.