Skip to content

mfliou/framework-ai-platform-edge-dgpu

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Overview

The following diagram illustrates a high-level discrete GPU-based Linux software stack to run High Performance Computing and AI/ML workloads on Intel® Xeon® platforms with Intel® Data Center Flex Series GPUs. This document provides a sample dockerfile with build instructions to automate installations of the recommended base GPU/media user space modules and AI/ML software components on the Intel® Edge Server platform with Intel® Data Center Flex Series GPUs.

System Software

Host System Requirement

Host Development platforms validated in this setup guide include:

  • Emerald Rapids - SP (EMR-SP)
  • Sapphire Rapids - EEC (SPR-EEC)
  • Ice Lake - D (ICX-D)

Intel® Data Center GPU validated in this setup guide include:

  • Intel® Data Center GPU Flex Series 170
  • Intel® Data Center GPU Flex Series 140

OS & Drivers Installation

RHEL 9.2 Installation

Ubuntu 22.04 Installation

AI Software Stack Installation

Please refer to the sample Dockerfile and build instructions below to build a docker image that contains the base GPU/media user space components, Intel® OneAPI, Intel® OpenVINO, Intel® Extension for PyTorch* (IPEX) and Intel® Extension for TensorFlow* (ITEX) AI software components to run AI/ML workloads with Docker.

Sample Dockerfile

For example for ubuntu 22.04

    FROM ubuntu:22.04
    ARG PROXY ""
    ARG NO_PROXY ""
    ENV http_proxy ${PROXY}
    ENV https_proxy ${PROXY}
    ENV ftp_proxy ${PROXY}
    ENV no_proxy ${NO_PROXY}

    RUN env -u no_proxy apt-get update
    RUN env -u no_proxy apt-get install -y --no-install-recommends wget gpg ca-certificates \
        apt-utils  curl gpg-agent

    RUN env -u no_proxy -u NO_PROXY wget -qO - \
        https://repositories.intel.com/graphics/intel-graphics.key \
        | gpg --dearmor --output /usr/share/keyrings/intel-graphics.gpg

    RUN echo "deb [arch=amd64 signed-by=/usr/share/keyrings/intel-graphics.gpg] \
        https://repositories.intel.com/gpu/ubuntu \
        jammy/production/2328 unified" | tee  /etc/apt/sources.list.d/intel.gpu.jammy.list

    RUN env -u no_proxy -u NO_PROXY apt update
    RUN env -u no_proxy -u NO_PROXY apt-get install -y \
        intel-opencl-icd intel-level-zero-gpu level-zero \
        intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
        libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
        libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
        mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo \
        intel-metrics-library \
        clinfo

    #Optional 1.0: install openapi dpcpp mkl
    ARG mkl_version=2024.0.0-49656
    ARG dpcpp_version=2024.0
    RUN env -u no_proxy -u NO_PROXY curl -fsSL \
        https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | apt-key add -
    RUN echo "deb https://apt.repos.intel.com/oneapi all main" | tee /etc/apt/sources.list.d/intel-oneapi.list
    RUN env -u no_proxy -u NO_PROXY apt update
    RUN env -u no_proxy -u NO_PROXY apt-get install -y intel-oneapi-mkl=${mkl_version} \
        intel-oneapi-compiler-dpcpp-cpp-runtime-${dpcpp_version}  \
        intel-oneapi-runtime-libs

    #Optional 1.1: install openvino runtime, Please specify --build-arg=ov_url=xxx to install specific version of openvino
    ENV INTEL_OPENVINO_DIR=/opt/intel/openvino
    ARG ov_url=https://storage.openvinotoolkit.org/repositories/openvino/packages/2023.0/linux/l_openvino_toolkit_ubuntu22_2023.0.0.10926.b4452d56304_x86_64.tgz
    WORKDIR /tmp
    RUN wget ${ov_url}
    RUN tar -xzf /tmp/*.tgz && \
        OV_BUILD="$(find . -maxdepth 1 -type d -name "*openvino*" | grep -oP '(?<=_)\d+.\d+.\d.\d+')" && \
        OV_YEAR="$(echo "$OV_BUILD" | grep -oP '^[^\d]*(\d+)')" && \
        OV_FOLDER="$(find . -maxdepth 1 -type d -name "*openvino*")" && \
        mkdir -p /opt/intel/openvino_"$OV_BUILD"/ && \
        cp -rf "$OV_FOLDER"/*  /opt/intel/openvino_"$OV_BUILD"/ && \
        rm -rf /tmp/"$OV_FOLDER" && \
        ln --symbolic /opt/intel/openvino_"$OV_BUILD"/ /opt/intel/openvino && \
        rm -rf "${INTEL_OPENVINO_DIR}/tools/workbench" && rm -rf /tmp

    RUN chmod 1777 /tmp
    RUN ${INTEL_OPENVINO_DIR}/install_dependencies/install_openvino_dependencies.sh -y \
        -c=python -c=core

    #Optional 2.0: install ipex & itex
    ARG tf_version=2.14.0
    ARG itex_version=v2.13.0.0
    ARG torch_version=2.1.0a0
    ARG ipex_version=2.1.10+xpu
    ARG torchvision=0.16.0a0
    RUN pip3 install tensorflow==${tf_version} intel-extension-for-tensorflow[gpu];
    RUN env -u no_proxy -u NO_PROXY python3 -m pip install \
        torch==${torch_version} torchvision==${torchvision} \
        intel_extension_for_pytorch==${ipex_version} \
        --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
    
  • Get Docker for your host OS
  • Kindly duplicate the aforementioned Dockerfile and save as Dockerfile.ubuntu
    #Example build command
    $ sudo usermod -aG docker $USER
    #in the same directory as the dockerfile
    $ docker build -t image:tag -f Dockerfile.ubuntu [--build-arg=<PROXY=xxx>] .

Manual Installation

If Dockerfile method is not desired, you may install the AI software toolchains following the installation guides below.

The user can run AI/ML workload on the installed software stack now.

Support

Submit your questions, issues, bugs on the GitHub issues page.

Security

See Intel's Security Center for information on how to report a potential security issue or vulnerability.

License

Apache License 2.0

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published