Skip to content

Commit

Permalink
Bug fixes and improvements (krahets#1205)
Browse files Browse the repository at this point in the history
* Add Ruby code blocks to documents

* Remove Ruby code from en/docs

* Remove "center-table" class in index.md

* Add "data-toc-label" to handle the latex heading during the build process

* Use normal JD link instead.

* Bug fixes
  • Loading branch information
krahets authored Apr 1, 2024
1 parent 5ce088d commit b3f100a
Show file tree
Hide file tree
Showing 30 changed files with 27 additions and 115 deletions.
2 changes: 1 addition & 1 deletion codes/rust/chapter_sorting/merge_sort.rs
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ fn merge(nums: &mut [i32], left: usize, mid: usize, right: usize) {
// 当左右子数组都还有元素时,进行比较并将较小的元素复制到临时数组中
while i <= mid && j <= right {
if nums[i] <= nums[j] {
tmp[k] = nums[j];
tmp[k] = nums[i];
i += 1;
} else {
tmp[k] = nums[j];
Expand Down
4 changes: 0 additions & 4 deletions docs/chapter_appendix/index.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,3 @@
# 附录

<div class="center-table" markdown>

![附录](../assets/covers/chapter_appendix.jpg)

</div>
4 changes: 0 additions & 4 deletions docs/chapter_backtracking/index.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,7 @@
# 回溯

<div class="center-table" markdown>

![回溯](../assets/covers/chapter_backtracking.jpg)

</div>

!!! abstract

我们如同迷宫中的探索者,在前进的道路上可能会遇到困难。
Expand Down
4 changes: 0 additions & 4 deletions docs/chapter_computational_complexity/index.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,7 @@
# 复杂度分析

<div class="center-table" markdown>

![复杂度分析](../assets/covers/chapter_complexity_analysis.jpg)

</div>

!!! abstract

复杂度分析犹如浩瀚的算法宇宙中的时空向导。
Expand Down
10 changes: 5 additions & 5 deletions docs/chapter_computational_complexity/space_complexity.md
Original file line number Diff line number Diff line change
Expand Up @@ -790,7 +790,7 @@ $$

![常见的空间复杂度类型](space_complexity.assets/space_complexity_common_types.png)

### 常数阶 $O(1)$ {data-toc-label="常数阶"}
### 常数阶 $O(1)$

常数阶常见于数量与输入数据大小 $n$ 无关的常量、变量、对象。

Expand All @@ -800,7 +800,7 @@ $$
[file]{space_complexity}-[class]{}-[func]{constant}
```

### 线性阶 $O(n)$ {data-toc-label="线性阶"}
### 线性阶 $O(n)$

线性阶常见于元素数量与 $n$ 成正比的数组、链表、栈、队列等:

Expand All @@ -816,7 +816,7 @@ $$

![递归函数产生的线性阶空间复杂度](space_complexity.assets/space_complexity_recursive_linear.png)

### 平方阶 $O(n^2)$ {data-toc-label="平方阶"}
### 平方阶 $O(n^2)$

平方阶常见于矩阵和图,元素数量与 $n$ 成平方关系:

Expand All @@ -832,7 +832,7 @@ $$

![递归函数产生的平方阶空间复杂度](space_complexity.assets/space_complexity_recursive_quadratic.png)

### 指数阶 $O(2^n)$ {data-toc-label="指数阶"}
### 指数阶 $O(2^n)$

指数阶常见于二叉树。观察下图,层数为 $n$ 的“满二叉树”的节点数量为 $2^n - 1$ ,占用 $O(2^n)$ 空间:

Expand All @@ -842,7 +842,7 @@ $$

![满二叉树产生的指数阶空间复杂度](space_complexity.assets/space_complexity_exponential.png)

### 对数阶 $O(\log n)$ {data-toc-label="对数阶"}
### 对数阶 $O(\log n)$

对数阶常见于分治算法。例如归并排序,输入长度为 $n$ 的数组,每轮递归将数组从中点处划分为两半,形成高度为 $\log n$ 的递归树,使用 $O(\log n)$ 栈帧空间。

Expand Down
14 changes: 7 additions & 7 deletions docs/chapter_computational_complexity/time_complexity.md
Original file line number Diff line number Diff line change
Expand Up @@ -1033,7 +1033,7 @@ $$

![常见的时间复杂度类型](time_complexity.assets/time_complexity_common_types.png)

### 常数阶 $O(1)$ {data-toc-label="常数阶"}
### 常数阶 $O(1)$

常数阶的操作数量与输入数据大小 $n$ 无关,即不随着 $n$ 的变化而变化。

Expand All @@ -1043,7 +1043,7 @@ $$
[file]{time_complexity}-[class]{}-[func]{constant}
```

### 线性阶 $O(n)$ {data-toc-label="线性阶"}
### 线性阶 $O(n)$

线性阶的操作数量相对于输入数据大小 $n$ 以线性级别增长。线性阶通常出现在单层循环中:

Expand All @@ -1059,7 +1059,7 @@ $$

值得注意的是,**输入数据大小 $n$ 需根据输入数据的类型来具体确定**。比如在第一个示例中,变量 $n$ 为输入数据大小;在第二个示例中,数组长度 $n$ 为数据大小。

### 平方阶 $O(n^2)$ {data-toc-label="平方阶"}
### 平方阶 $O(n^2)$

平方阶的操作数量相对于输入数据大小 $n$ 以平方级别增长。平方阶通常出现在嵌套循环中,外层循环和内层循环的时间复杂度都为 $O(n)$ ,因此总体的时间复杂度为 $O(n^2)$ :

Expand All @@ -1077,7 +1077,7 @@ $$
[file]{time_complexity}-[class]{}-[func]{bubble_sort}
```

### 指数阶 $O(2^n)$ {data-toc-label="指数阶"}
### 指数阶 $O(2^n)$

生物学的“细胞分裂”是指数阶增长的典型例子:初始状态为 $1$ 个细胞,分裂一轮后变为 $2$ 个,分裂两轮后变为 $4$ 个,以此类推,分裂 $n$ 轮后有 $2^n$ 个细胞。

Expand All @@ -1097,7 +1097,7 @@ $$

指数阶增长非常迅速,在穷举法(暴力搜索、回溯等)中比较常见。对于数据规模较大的问题,指数阶是不可接受的,通常需要使用动态规划或贪心算法等来解决。

### 对数阶 $O(\log n)$ {data-toc-label="对数阶"}
### 对数阶 $O(\log n)$

与指数阶相反,对数阶反映了“每轮缩减到一半”的情况。设输入数据大小为 $n$ ,由于每轮缩减到一半,因此循环次数是 $\log_2 n$ ,即 $2^n$ 的反函数。

Expand Down Expand Up @@ -1127,7 +1127,7 @@ $$

也就是说,底数 $m$ 可以在不影响复杂度的前提下转换。因此我们通常会省略底数 $m$ ,将对数阶直接记为 $O(\log n)$ 。

### 线性对数阶 $O(n \log n)$ {data-toc-label="线性对数阶"}
### 线性对数阶 $O(n \log n)$

线性对数阶常出现于嵌套循环中,两层循环的时间复杂度分别为 $O(\log n)$ 和 $O(n)$ 。相关代码如下:

Expand All @@ -1141,7 +1141,7 @@ $$

主流排序算法的时间复杂度通常为 $O(n \log n)$ ,例如快速排序、归并排序、堆排序等。

### 阶乘阶 $O(n!)$ {data-toc-label="阶乘阶"}
### 阶乘阶 $O(n!)$

阶乘阶对应数学上的“全排列”问题。给定 $n$ 个互不重复的元素,求其所有可能的排列方案,方案数量为:

Expand Down
4 changes: 0 additions & 4 deletions docs/chapter_data_structure/index.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,7 @@
# 数据结构

<div class="center-table" markdown>

![数据结构](../assets/covers/chapter_data_structure.jpg)

</div>

!!! abstract

数据结构如同一副稳固而多样的框架。
Expand Down
4 changes: 0 additions & 4 deletions docs/chapter_divide_and_conquer/index.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,7 @@
# 分治

<div class="center-table" markdown>

![分治](../assets/covers/chapter_divide_and_conquer.jpg)

</div>

!!! abstract

难题被逐层拆解,每一次的拆解都使它变得更为简单。
Expand Down
4 changes: 0 additions & 4 deletions docs/chapter_dynamic_programming/index.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,7 @@
# 动态规划

<div class="center-table" markdown>

![动态规划](../assets/covers/chapter_dynamic_programming.jpg)

</div>

!!! abstract

小溪汇入河流,江河汇入大海。
Expand Down
4 changes: 0 additions & 4 deletions docs/chapter_graph/index.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,7 @@
#

<div class="center-table" markdown>

![](../assets/covers/chapter_graph.jpg)

</div>

!!! abstract

在生命旅途中,我们就像是一个个节点,被无数看不见的边相连。
Expand Down
4 changes: 0 additions & 4 deletions docs/chapter_greedy/index.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,7 @@
# 贪心

<div class="center-table" markdown>

![贪心](../assets/covers/chapter_greedy.jpg)

</div>

!!! abstract

向日葵朝着太阳转动,时刻追求自身成长的最大可能。
Expand Down
4 changes: 0 additions & 4 deletions docs/chapter_hashing/index.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,7 @@
# 哈希表

<div class="center-table" markdown>

![哈希表](../assets/covers/chapter_hashing.jpg)

</div>

!!! abstract

在计算机世界中,哈希表如同一位聪慧的图书管理员。
Expand Down
4 changes: 0 additions & 4 deletions docs/chapter_heap/index.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,7 @@
#

<div class="center-table" markdown>

![](../assets/covers/chapter_heap.jpg)

</div>

!!! abstract

堆就像是山岳峰峦,层叠起伏、形态各异。
Expand Down
4 changes: 0 additions & 4 deletions docs/chapter_introduction/index.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,7 @@
# 初识算法

<div class="center-table" markdown>

![初识算法](../assets/covers/chapter_introduction.jpg)

</div>

!!! abstract

一位少女翩翩起舞,与数据交织在一起,裙摆上飘扬着算法的旋律。
Expand Down
Binary file modified docs/chapter_paperbook/index.assets/book_jd_link.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 1 addition & 1 deletion docs/chapter_paperbook/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ status: new

## 购买链接

如果你对纸质书感兴趣,可以考虑入手一本。我们为大家争取到了新书 5 折优惠,请见[此链接](https://3.cn/-1Wwj1jq)或扫描以下二维码:
如果你对纸质书感兴趣,可以考虑入手一本。我们为大家争取到了新书 5 折优惠,请见[此链接](https://3.cn/1X-qmTD3)或扫描以下二维码:

![](index.assets/book_jd_link.jpg){ class="animation-figure" }

Expand Down
4 changes: 0 additions & 4 deletions docs/chapter_preface/index.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,7 @@
# 前言

<div class="center-table" markdown>

![前言](../assets/covers/chapter_preface.jpg)

</div>

!!! abstract

算法犹如美妙的交响乐,每一行代码都像韵律般流淌。
Expand Down
4 changes: 0 additions & 4 deletions docs/chapter_searching/index.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,7 @@
# 搜索

<div class="center-table" markdown>

![搜索](../assets/covers/chapter_searching.jpg)

</div>

!!! abstract

搜索是一场未知的冒险,我们或许需要走遍神秘空间的每个角落,又或许可以快速锁定目标。
Expand Down
4 changes: 0 additions & 4 deletions docs/chapter_sorting/index.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,7 @@
# 排序

<div class="center-table" markdown>

![排序](../assets/covers/chapter_sorting.jpg)

</div>

!!! abstract

排序犹如一把将混乱变为秩序的魔法钥匙,使我们能以更高效的方式理解与处理数据。
Expand Down
4 changes: 0 additions & 4 deletions docs/chapter_stack_and_queue/index.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,7 @@
# 栈与队列

<div class="center-table" markdown>

![栈与队列](../assets/covers/chapter_stack_and_queue.jpg)

</div>

!!! abstract

栈如同叠猫猫,而队列就像猫猫排队。
Expand Down
2 changes: 1 addition & 1 deletion docs/chapter_tree/array_representation_of_tree.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@

![完美二叉树的数组表示](array_representation_of_tree.assets/array_representation_binary_tree.png)

**映射公式的角色相当于链表中的引用**。给定数组中的任意一个节点,我们都可以通过映射公式来访问它的左(右)子节点。
**映射公式的角色相当于链表中的节点引用(指针)**。给定数组中的任意一个节点,我们都可以通过映射公式来访问它的左(右)子节点。

## 表示任意二叉树

Expand Down
4 changes: 0 additions & 4 deletions docs/chapter_tree/index.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,7 @@
#

<div class="center-table" markdown>

![](../assets/covers/chapter_tree.jpg)

</div>

!!! abstract

参天大树充满生命力,根深叶茂,分枝扶疏。
Expand Down
4 changes: 0 additions & 4 deletions en/docs/chapter_computational_complexity/index.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,7 @@
# Complexity Analysis

<div class="center-table" markdown>

![complexity_analysis](../assets/covers/chapter_complexity_analysis.jpg)

</div>

!!! abstract

Complexity analysis is like a space-time navigator in the vast universe of algorithms.
Expand Down
10 changes: 5 additions & 5 deletions en/docs/chapter_computational_complexity/space_complexity.md
Original file line number Diff line number Diff line change
Expand Up @@ -736,7 +736,7 @@ $$

![Common Types of Space Complexity](space_complexity.assets/space_complexity_common_types.png)

### Constant Order $O(1)$ {data-toc-label="Constant Order"}
### Constant Order $O(1)$

Constant order is common in constants, variables, objects that are independent of the size of input data $n$.

Expand All @@ -746,7 +746,7 @@ Note that memory occupied by initializing variables or calling functions in a lo
[file]{space_complexity}-[class]{}-[func]{constant}
```

### Linear Order $O(n)$ {data-toc-label="Linear Order"}
### Linear Order $O(n)$

Linear order is common in arrays, linked lists, stacks, queues, etc., where the number of elements is proportional to $n$:

Expand All @@ -762,7 +762,7 @@ As shown below, this function's recursive depth is $n$, meaning there are $n$ in

![Recursive Function Generating Linear Order Space Complexity](space_complexity.assets/space_complexity_recursive_linear.png)

### Quadratic Order $O(n^2)$ {data-toc-label="Quadratic Order"}
### Quadratic Order $O(n^2)$

Quadratic order is common in matrices and graphs, where the number of elements is quadratic to $n$:

Expand All @@ -778,7 +778,7 @@ As shown below, the recursive depth of this function is $n$, and in each recursi

![Recursive Function Generating Quadratic Order Space Complexity](space_complexity.assets/space_complexity_recursive_quadratic.png)

### Exponential Order $O(2^n)$ {data-toc-label="Exponential Order"}
### Exponential Order $O(2^n)$

Exponential order is common in binary trees. Observe the below image, a "full binary tree" with $n$ levels has $2^n - 1$ nodes, occupying $O(2^n)$ space:

Expand All @@ -788,7 +788,7 @@ Exponential order is common in binary trees. Observe the below image, a "full bi

![Full Binary Tree Generating Exponential Order Space Complexity](space_complexity.assets/space_complexity_exponential.png)

### Logarithmic Order $O(\log n)$ {data-toc-label="Logarithmic Order"}
### Logarithmic Order $O(\log n)$

Logarithmic order is common in divide-and-conquer algorithms. For example, in merge sort, an array of length $n$ is recursively divided in half each round, forming a recursion tree of height $\log n$, using $O(\log n)$ stack frame space.

Expand Down
Loading

0 comments on commit b3f100a

Please sign in to comment.