Implementing Facebook's FastText with java. Fasttext is a library for text representation and classification by facebookresearch. It implements text classification and word embedding learning.
Features:
- Implementing with java(kotlin)
- Well-designed API
- Compatible with original C++ model file (include quantizer compression model)
- Provides training api (almost the same performance)
- Support for java file formats( can read file use mmap),read big model file with less memory
compile 'com.mayabot:fastText4j:1.2.2'
<dependency>
<groupId>com.mayabot</groupId>
<artifactId>fastText4j</artifactId>
<version>1.2.2</version>
</dependency>
- ModelName.sup supervised
- ModelName.sg skipgram
- ModelName.cow cbow
//Word representation learning
FastText fastText = FastText.train(new File("train.data"), ModelName.sg);
// Text classification
FastText fastText = FastText.train(new File("train.data"), ModelName.sup);
data.txt is also encoded in utf-8 with one sample each line. And it needs to do word spliting beforehand as well. There is a string starting with __label__
in each line,representing the classifying target, such as __label__正面
. Each sample could have multiple label. Through the attribute 'label' in TrainArgs, you can customise the head.
save model to java format
fastText.saveModel("path/data.model");
public Fasttext loadModel(String modelPath, boolean mmap)
//load from java format
FastText fastText = FastText.loadModel("path/data.model",true);
//load from c++ format
FastText fastText = FastText.loadFasttextBinModel("path/wiki.bin")
FastText quantize(FastText fastText , int dsub=2, boolean qnorm=false)
//load from java format
FastText quantizerFastText = FastText.quantize(fastText,2,false);
//predict the result of a word
List<FloatStringPair> predict = fastText.predict(Arrays.asList("fastText在预测标签时使用了非线性激活函数".split(" ")), 5);
List<FloatStringPair> predict = fastText.nearestNeighbor("中国",5);
By giving three words A, B and C, return the nearest words in terms of semantic distance and their similarity list, under the condition of (A - B + C).
List<FloatStringPair> predict = fastText.analogies("国王","皇后","男",5);
test agnews data set, train and predict by fastText4j
Result:
Read 5M words
Number of words: 95812
Number of labels: 4
Progress: 100.00% words/sec/thread: 5792774 lr: 0.00000 loss: 0.28018 ETA: 0h 0m 0s
Train use time 5275 ms
total=7600
right=6889
rate 0.9064473684210527
The parameters is consistant with the C++ version :
The following arguments for the dictionary are optional:
-minCount minimal number of word occurences [1]
-minCountLabel minimal number of label occurences [0]
-wordNgrams max length of word ngram [1]
-bucket number of buckets [2000000]
-minn min length of char ngram [0]
-maxn max length of char ngram [0]
-t sampling threshold [0.0001]
-label labels prefix [__label__]
The following arguments for training are optional:
-lr learning rate [0.1]
-lrUpdateRate change the rate of updates for the learning rate [100]
-dim size of word vectors [100]
-ws size of the context window [5]
-epoch number of epochs [5]
-neg number of negatives sampled [5]
-loss loss function {ns, hs, softmax} [softmax]
-thread number of threads [12]
-pretrainedVectors pretrained word vectors for supervised learning []
-saveOutput whether output params should be saved [0]
The following arguments for quantization are optional:
-cutoff number of words and ngrams to retain [0]
-retrain finetune embeddings if a cutoff is applied [0]
-qnorm quantizing the norm separately [0]
-qout quantizing the classifier [0]
-dsub size of each sub-vector [2]
Recent state-of-the-art English word vectors.
Word vectors for 157 languages trained on Wikipedia and Crawl.
Models for language identification and various supervised tasks.
Please cite 1 if using this code for learning word representations or 2 if using for text classification.
[1] P. Bojanowski*, E. Grave*, A. Joulin, T. Mikolov, Enriching Word Vectors with Subword Information
@article{bojanowski2017enriching,
title={Enriching Word Vectors with Subword Information},
author={Bojanowski, Piotr and Grave, Edouard and Joulin, Armand and Mikolov, Tomas},
journal={Transactions of the Association for Computational Linguistics},
volume={5},
year={2017},
issn={2307-387X},
pages={135--146}
}
[2] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of Tricks for Efficient Text Classification
@InProceedings{joulin2017bag,
title={Bag of Tricks for Efficient Text Classification},
author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas},
booktitle={Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers},
month={April},
year={2017},
publisher={Association for Computational Linguistics},
pages={427--431},
}
[3] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, FastText.zip: Compressing text classification models
@article{joulin2016fasttext,
title={FastText.zip: Compressing text classification models},
author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{\'e}gou, H{\'e}rve and Mikolov, Tomas},
journal={arXiv preprint arXiv:1612.03651},
year={2016}
}
(* These authors contributed equally.)
fastText is BSD-licensed. facebook provide an additional patent grant.