Skip to content

Commit

Permalink
Merged PR 48123: Release 0.14.35.3
Browse files Browse the repository at this point in the history
Release 0.14.35.1
  • Loading branch information
Stuart Dent committed Dec 7, 2020
1 parent 03880fd commit eee896b
Show file tree
Hide file tree
Showing 61 changed files with 1,963 additions and 554 deletions.
2 changes: 1 addition & 1 deletion Directory.Build.props
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
<Company>Microsoft Corporation</Company>
<Owners>microsoft,psi</Owners>
<Authors>Microsoft</Authors>
<AssemblyVersion>0.13.38.2</AssemblyVersion>
<AssemblyVersion>0.14.35.3</AssemblyVersion>
<FileVersion>$(AssemblyVersion)</FileVersion>
<Version>$(AssemblyVersion)-beta</Version>
<SignAssembly>false</SignAssembly>
Expand Down
3 changes: 2 additions & 1 deletion Sources/Audio/Microsoft.Psi.Audio/WaveFileStreamReader.cs
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ namespace Microsoft.Psi.Audio
using System;
using System.Collections.Generic;
using System.IO;
using System.Runtime.Serialization;
using System.Threading;
using Microsoft.Psi;
using Microsoft.Psi.Data;
Expand Down Expand Up @@ -160,7 +161,7 @@ public IStreamReader OpenNew()
}

/// <inheritdoc />
public IStreamMetadata OpenStream<T>(string name, Action<T, Envelope> target, Func<T> allocator = null)
public IStreamMetadata OpenStream<T>(string name, Action<T, Envelope> target, Func<T> allocator = null, Action<SerializationException> errorHandler = null)
{
ValidateStreamName(name);

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ public sealed class ProjectTo3D : ConsumerProducer<(Shared<DepthImage>, List<Poi
/// <summary>
/// Initializes a new instance of the <see cref="ProjectTo3D"/> class.
/// </summary>
/// <param name="pipeline">Pipeline this component is a part of.</param>
/// <param name="pipeline">The pipeline to add the component to.</param>
public ProjectTo3D(Pipeline pipeline)
: base(pipeline)
{
Expand Down
4 changes: 2 additions & 2 deletions Sources/Data/Microsoft.Psi.Data/Json/JsonGenerator.cs
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ public class JsonGenerator : Generator, IDisposable
/// <summary>
/// Initializes a new instance of the <see cref="JsonGenerator"/> class.
/// </summary>
/// <param name="pipeline">Pipeline this component is a part of.</param>
/// <param name="pipeline">The pipeline to add the component to.</param>
/// <param name="name">The name of the application that generated the persisted files, or the root name of the files.</param>
/// <param name="path">The directory in which the main persisted file resides.</param>
public JsonGenerator(Pipeline pipeline, string name, string path)
Expand All @@ -33,7 +33,7 @@ public JsonGenerator(Pipeline pipeline, string name, string path)
/// <summary>
/// Initializes a new instance of the <see cref="JsonGenerator"/> class.
/// </summary>
/// <param name="pipeline">Pipeline this component is a part of.</param>
/// <param name="pipeline">The pipeline to add the component to.</param>
/// <param name="reader">The underlying store reader.</param>
protected JsonGenerator(Pipeline pipeline, JsonStoreReader reader)
: base(pipeline)
Expand Down
3 changes: 2 additions & 1 deletion Sources/Data/Microsoft.Psi.Data/Json/JsonStreamReader.cs
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ namespace Microsoft.Psi.Data.Json
{
using System;
using System.Collections.Generic;
using System.Runtime.Serialization;
using System.Threading;
using Microsoft.Psi;
using Newtonsoft.Json.Linq;
Expand Down Expand Up @@ -125,7 +126,7 @@ public virtual IStreamReader OpenNew()
}

/// <inheritdoc />
public IStreamMetadata OpenStream<T>(string streamName, Action<T, Envelope> target, Func<T> allocator = null)
public IStreamMetadata OpenStream<T>(string streamName, Action<T, Envelope> target, Func<T> allocator = null, Action<SerializationException> errorHandler = null)
{
if (string.IsNullOrWhiteSpace(streamName))
{
Expand Down
2 changes: 1 addition & 1 deletion Sources/Imaging/Microsoft.Psi.Imaging/ImageTransformer.cs
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ public class ImageTransformer : ConsumerProducer<Shared<Image>, Shared<Image>>
/// <summary>
/// Initializes a new instance of the <see cref="ImageTransformer"/> class.
/// </summary>
/// <param name="pipeline">Pipeline this component is a part of.</param>
/// <param name="pipeline">The pipeline to add the component to.</param>
/// <param name="transformer">Function for transforming the source image.</param>
/// <param name="pixelFormat">Pixel format for destination image.</param>
/// <param name="sharedImageAllocator ">Optional image allocator for creating new shared image.</param>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,6 @@
[assembly: AssemblyCopyright("Copyright (c) Microsoft Corporation. All rights reserved.")]
[assembly: ComVisible(false)]
[assembly: Guid("191df615-3d8f-45a3-b763-dd4a604a712a")]
[assembly: AssemblyVersion("0.13.38.2")]
[assembly: AssemblyFileVersion("0.13.38.2")]
[assembly: AssemblyInformationalVersion("0.13.38.2-beta")]
[assembly: AssemblyVersion("0.14.35.3")]
[assembly: AssemblyFileVersion("0.14.35.3")]
[assembly: AssemblyInformationalVersion("0.14.35.3-beta")]
Original file line number Diff line number Diff line change
Expand Up @@ -238,7 +238,7 @@ private async Task ReceiveAsync(Shared<Image> data, Envelope e)
{
var analysisResult = default(ImageAnalysis);

if (data != null)
if (data != null && data.Resource != null)
{
using Stream imageFileStream = new MemoryStream();

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.

namespace Microsoft.Psi.Onnx
{
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Microsoft.Psi;

/// <summary>
/// Internal class that parses the outputs from the ImageNet model into
/// a set of image classification results.
/// </summary>
internal class ImageNetModelOutputParser
{
private readonly string[] labels;
private readonly int maxPredictions;
private readonly bool applySoftmax;

/// <summary>
/// Initializes a new instance of the <see cref="ImageNetModelOutputParser"/> class.
/// </summary>
/// <param name="imageClassesFile">The path to the file containing the list of 1000 ImageNet classes.</param>
/// <param name="maxPredictions">The maximum number of predictions to return.</param>
/// <param name="applySoftmax">Whether the softmax function should be applied to the raw model output.</param>
/// <remarks>
/// The file referenced by <paramref name="imageClassesFile"/> may be downloaded from the following location:
/// https://github.com/onnx/models/raw/8d50e3f598e6d5c67c7c7253e5a203a26e731a1b/vision/classification/synset.txt.
/// </remarks>
public ImageNetModelOutputParser(string imageClassesFile, int maxPredictions, bool applySoftmax)
{
this.labels = File.ReadAllLines(imageClassesFile);
if (this.labels.Length != 1000)
{
throw new ArgumentException($"The file {imageClassesFile} does not appear to be in the correct format. This file should contain exactly 1000 lines representing an ordered list of the 1000 ImageNet classes.");
}

this.maxPredictions = maxPredictions;
this.applySoftmax = applySoftmax;
}

/// <summary>
/// Gets the predictions from the model output.
/// </summary>
/// <param name="modelOutput">The model output vector of class probabilities.</param>
/// <returns>A list of the top-N predictions, in descending probability order.</returns>
public List<LabeledPrediction> GetPredictions(float[] modelOutput)
{
return GetTopResults(this.applySoftmax ? Softmax(modelOutput) : modelOutput, this.maxPredictions)
.Select(c => new LabeledPrediction { Label = this.labels[c.Index], Confidence = c.Value })
.ToList();
}

private static IEnumerable<(int Index, float Value)> GetTopResults(IEnumerable<float> predictedClasses, int count)
{
return predictedClasses
.Select((predictedClass, index) => (Index: index, Value: predictedClass))
.OrderByDescending(result => result.Value)
.Take(count);
}

private static IEnumerable<float> Softmax(IEnumerable<float> values)
{
var maxVal = values.Max();
var exp = values.Select(v => Math.Exp(v - maxVal));
var sumExp = exp.Sum();

return exp.Select(v => (float)(v / sumExp));
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.

namespace Microsoft.Psi.Onnx
{
using System;
using System.Collections.Generic;
using Microsoft.Psi;
using Microsoft.Psi.Components;
using Microsoft.Psi.Imaging;

/// <summary>
/// Component that runs an ImageNet image classification model.
/// </summary>
/// <remarks>
/// This class implements a \psi component that runs an ONNX model trained
/// on the ImageNet dataset that operates on 224x224 RGB images and scores
/// the image for each of the 1000 ImageNet classes. It takes an input
/// stream of \psi images, applies a center-crop, rescales and normalizes
/// the pixel values into the input vector expected by the model. It also
/// parses the model outputs into a list of <see cref="LabeledPrediction"/>
/// values, corresponding to the top N predictions by the model. For
/// convenience, a set of pre-defined model runner configurations are
/// defined for a number of image classification models available in the
/// ONNX Model Zoo (https://github.com/onnx/models/tree/master/vision/classification).
/// The ONNX model file for the corresponding configuration will need to be
/// downloaded locally and the path to the model file will need to be
/// specified when creating the configuration.
/// </remarks>
public class ImageNetModelRunner : ConsumerProducer<Shared<Image>, List<LabeledPrediction>>
{
private readonly float[] onnxInputVector = new float[3 * 224 * 224];
private readonly OnnxModel onnxModel;
private readonly ImageNetModelOutputParser outputParser;

/// <summary>
/// Initializes a new instance of the <see cref="ImageNetModelRunner"/> class.
/// </summary>
/// <param name="pipeline">The pipeline to add the component to.</param>
/// <param name="configuration">The configuration for the compoinent.</param>
/// <remarks>
/// To run on a GPU, use the Microsoft.Psi.Onnx.ModelRunners.Gpu library instead of Microsoft.Psi.Onnx.ModelRunners.Cpu, and set
/// the value of the <pararef name="gpuDeviceId"/> parameter to a valid non-negative integer. Typical device ID values are 0 or 1.
/// </remarks>
public ImageNetModelRunner(Pipeline pipeline, ImageNetModelRunnerConfiguration configuration)
: base(pipeline)
{
// create an ONNX model based on the supplied ImageNet model runner configuration
this.onnxModel = new OnnxModel(new OnnxModelConfiguration()
{
ModelFileName = configuration.ModelFilePath,
InputVectorName = configuration.InputVectorName,
InputVectorSize = 3 * 224 * 224,
OutputVectorName = configuration.OutputVectorName,
GpuDeviceId = configuration.GpuDeviceId,
});

this.outputParser = new ImageNetModelOutputParser(configuration.ImageClassesFilePath, configuration.NumberOfPredictions, configuration.ApplySoftmaxToModelOutput);
}

/// <inheritdoc/>
protected override void Receive(Shared<Image> data, Envelope envelope)
{
// construct the ONNX model input vector (stored in this.onnxInputVector)
// based on the incoming image
this.ConstructOnnxInputVector(data);

// run the model over the input vector
var outputVector = this.onnxModel.GetPrediction(this.onnxInputVector);

// parse the model output into an ordered list of the top-N predictions
var results = this.outputParser.GetPredictions(outputVector);

// post the results
this.Out.Post(results, envelope.OriginatingTime);
}

/// <summary>
/// Constructs the input vector for the ImageNet model for a specified image.
/// </summary>
/// <param name="sharedImage">The image to construct the input vector for.</param>
private void ConstructOnnxInputVector(Shared<Image> sharedImage)
{
var inputImage = sharedImage.Resource;
var inputWidth = sharedImage.Resource.Width;
var inputHeight = sharedImage.Resource.Height;

// crop a center square
var squareSize = Math.Min(inputWidth, inputHeight);
using var squareImage = ImagePool.GetOrCreate(squareSize, squareSize, sharedImage.Resource.PixelFormat);
if (inputWidth > inputHeight)
{
inputImage.Crop(squareImage.Resource, (inputWidth - squareSize) / 2, 0, squareSize, squareSize);
}
else
{
inputImage.Crop(squareImage.Resource, 0, (inputHeight - squareSize) / 2, squareSize, squareSize);
}

// resize the image to 224 x 224
using var resizedImage = ImagePool.GetOrCreate(224, 224, sharedImage.Resource.PixelFormat);
squareImage.Resource.Resize(resizedImage.Resource, 224, 224, SamplingMode.Bilinear);

// if the pixel format does not match, do a conversion before extracting the bytes
var bytes = default(byte[]);
if (sharedImage.Resource.PixelFormat != PixelFormat.BGR_24bpp)
{
using var reformattedImage = ImagePool.GetOrCreate(224, 224, PixelFormat.BGR_24bpp);
resizedImage.Resource.CopyTo(reformattedImage.Resource);
bytes = reformattedImage.Resource.ReadBytes(3 * 224 * 224);
}
else
{
// get the bytes
bytes = resizedImage.Resource.ReadBytes(3 * 224 * 224);
}

// Now populate the onnxInputVector float array / tensor by normalizing
// using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225].
int fi = 0;

// first the red bytes
for (int i = 2; i < bytes.Length; i += 3)
{
this.onnxInputVector[fi++] = ((bytes[i] / 255.0f) - 0.485f) / 0.229f;
}

// then the green bytes
for (int i = 1; i < bytes.Length; i += 3)
{
this.onnxInputVector[fi++] = ((bytes[i] / 255.0f) - 0.456f) / 0.224f;
}

// then the blue bytes
for (int i = 0; i < bytes.Length; i += 3)
{
this.onnxInputVector[fi++] = ((bytes[i] / 255.0f) - 0.406f) / 0.225f;
}
}
}
}
Loading

0 comments on commit eee896b

Please sign in to comment.