End-to-end Deep Reinforcement Learning for Real-World Robotics Navigation in Pytorch
Warning : This project is still in progress and not yet finalized for release for use.
This project uses Deep Reinforcement Learning (DRL) to train a robot to move in unfamiliar environments. The robot learns to make decisions on its own, interacting with the environment, and gradually becomes better and more efficient at navigation.
Installation and usage mode.
- Install with pip:
pip install rnl
- Use
train
:
import numpy as np
import rnl as vault
# 1.step -> config robot
param_robot = vault.robot(
base_radius=0.105, # (m)
vel_linear=[0.0, 0.22], # [min, max]
vel_angular=[1.0, 2.84], # [min, max]
wheel_distance=0.16, # (m)
weight=1.0, # robot (kg)
threshold=1.0, # distance for obstacle avoidance (m)
collision=0.5,
path_model="None",
)
# 2.step -> config sensors [for now only lidar sensor!!]
param_sensor = vault.sensor(
fov=2 * np.pi,
num_rays=20,
min_range=0.0,
max_range=6.0,
)
# 3.step -> config env
param_env = vault.make(
scale=100,
folder_map="None",
name_map="None",
max_timestep=10000,
mode="easy-01",
)
# 4. step -> config render
param_render = vault.render(controller=False, debug=True, plot=False)
# 5.step -> config train robot
model = vault.Trainer(
param_robot, param_sensor, param_env, param_render
)
# 6.step -> train robot
model.learn(
algorithm="PPO",
max_timestep_global=3000000,
seed=1,
buffer_size=1000000,
hidden_size=[20, 10],
activation="ReLu",
batch_size=1024,
num_envs=4,
device="cuda",
checkpoint="model",
use_wandb=True,
wandb_api_key="",
lr=0.0003,
learn_step=512,
gae_lambda=0.95,
action_std_init=0.6,
clip_coef=0.2,
ent_coef=0.0,
vf_coef=0.5,
max_grad_norm=0.5,
update_epochs=10,
name="models",
)
- Use
inference
:
import numpy as np
import rnl as vault
# 1.step -> config robot
param_robot = vault.robot(
base_radius=0.105, # (m)
vel_linear=[0.0, 0.22], # [min, max]
vel_angular=[1.0, 2.84], # [min, max]
wheel_distance=0.16, # (m)
weight=1.0, # robot (kg)
threshold=1.0, # distance for obstacle avoidance (m)
collision=0.5,
path_model="None",
)
# 2.step -> config sensors [for now only lidar sensor!!]
param_sensor = vault.sensor(
fov=2 * np.pi,
num_rays=20,
min_range=0.0,
max_range=6.0,
)
# 3.step -> config env
param_env = vault.make(
scale=100,
folder_map="None",
name_map="None",
max_timestep=10000,
mode="easy-01",
)
# 4.step -> config render
param_render = vault.render(controller=False, debug=True, plot=False)
# 5.step -> config train robot
vault.Simulation(param_robot, param_sensor, param_env, param_render)
# 6.step -> run robot
model.run()
- Use
demo
:
python main.py -m sim
This project is licensed under the MIT license - see archive LICENSE for details.
The project is still under development and may have some bugs. If you encounter any problems or have suggestions, feel free to open an issue
or send an email
to:
Nicolas Alan - [email protected].