Skip to content

MIVisionX toolkit is a comprehensive computer vision and machine intelligence libraries, utilities and applications bundled into a single toolkit.

License

Notifications You must be signed in to change notification settings

milkoleporis/MIVisionX

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MIT licensed Build Status

MIVisionX toolkit is a set of comprehensive computer vision and machine intelligence libraries, utilities, and applications bundled into a single toolkit. AMD MIVisionX delivers highly optimized open source implementation of the Khronos OpenVX™ and OpenVX™ Extensions along with Convolution Neural Net Model Compiler & Optimizer supporting ONNX, and Khronos NNEF™ exchange formats. The toolkit allows for rapid prototyping and deployment of optimized workloads on a wide range of computer hardware, including small embedded x86 CPUs, APUs, discrete GPUs, and heterogeneous servers.

AMD OpenVX

AMD OpenVX (amd_openvx) is a highly optimized open source implementation of the Khronos OpenVX computer vision specification. It allows for rapid prototyping as well as fast execution on a wide range of computer hardware, including small embedded x86 CPUs and large workstation discrete GPUs.

AMD OpenVX Extensions

The OpenVX framework provides a mechanism to add new vision functions to OpenVX by 3rd party vendors. This project has below mentioned OpenVX modules and utilities to extend amd_openvx project, which contains the AMD OpenVX Core Engine.

  • amd_loomsl: AMD Radeon Loom stitching library for live 360 degree video applications
  • amd_nn: OpenVX neural network module
  • amd_opencv: OpenVX module that implements a mechanism to access OpenCV functionality as OpenVX kernels
  • amd_winml: WinML extension will allow developers to import a pre-trained ONNX model into an OpenVX graph and add hundreds of different pre & post processing vision/generic/user-defined functions, available in OpenVX and OpenCV interop, to the input and output of the neural net model. This will allow developers to build an end to end application for inference.
  • amd_rpp: OpenVX extension providing an interface to some of the RPP's (Radeon Performance Primitives) functions. This extension is used to enable RALI to perform image augmentation.

Applications

MIVisionX has a number of applications built on top of OpenVX modules, it uses AMD optimized libraries to build applications which can be used to prototype or used as models to develop a product.

Neural Net Model Compiler & Optimizer

Neural Net Model Compiler & Optimizer (model_compiler) converts pre-trained neural net models to MIVisionX runtime code for optimized inference.

Toolkit

MIVisionX Toolkit, is a comprehensive set of help tools for neural net creation, development, training, and deployment. The Toolkit provides you with helpful tools to design, develop, quantize, prune, retrain, and infer your neural network work in any framework. The Toolkit is designed to help you deploy your work to any AMD or 3rd party hardware, from embedded to servers.

MIVisionX provides you with tools for accomplishing your tasks throughout the whole neural net life-cycle, from creating a model to deploying them for your target platforms.

Utilities

  • inference_generator: generate inference library from pre-trained CAFFE models
  • loom_shell: an interpreter to prototype 360 degree video stitching applications using a script
  • RunVX: command-line utility to execute OpenVX graph described in GDF text file
  • RunCL: command-line utility to build, execute, and debug OpenCL programs

RALI

The Radeon Augmentation Library RALI is designed to efficiently decode and process images and videos from a variety of storage formats and modify them through a processing graph programmable by the user.

Prerequisites

  • CPU: SSE4.1 or above CPU, 64-bit
  • GPU: GFX7 or above [optional]
  • APU: Carrizo or above [optional]

Note: Some modules in MIVisionX can be built for CPU only. To take advantage of advanced features and modules we recommend using AMD GPUs or AMD APUs.

Windows

  • Windows 10
  • Windows SDK
  • Visual Studio 2017
  • Install the latest drivers and OpenCL SDK
  • OpenCV 3.4
    • Set OpenCV_DIR environment variable to OpenCV/build folder
    • Add %OpenCV_DIR%\x64\vc14\bin or %OpenCV_DIR%\x64\vc15\bin to your PATH

Linux

  • Install ROCm
  • ROCm CMake, MIOpenGEMM & MIOpen for Neural Net Extensions (vx_nn)
  • CMake 2.8 or newer download
  • Qt Creator for Cloud Inference Client
  • Protobuf for inference generator & model compiler
    • install libprotobuf-dev and protobuf-compiler needed for vx_nn
  • OpenCV 3.4
    • Set OpenCV_DIR environment variable to OpenCV/build folder
  • FFMPEG n4.0.4 - Optional
    • FFMPEG is required for amd_media & mv_deploy modules

Prerequisites setup script for Linux - MIVisionX-setup.py

For the convenience of the developer, we here provide the setup script which will install all the dependencies required by this project.

MIVisionX-setup.py builds all the prerequisites required by MIVisionX. The setup script creates a deps folder and installs all the prerequisites, this script only needs to be executed once. If directory option is not given, the script will install deps folder in the home directory(~/) by default, else in the user specified location.

Prerequisites for running the script
  1. Ubuntu 16.04/18.04 or CentOS 7.5/7.6
  2. ROCm supported hardware
  3. ROCm

usage:

python MIVisionX-setup.py --directory [setup directory - optional]
                          --installer [Package management tool - optional (default:apt-get) [options: Ubuntu:apt-get;CentOS:yum]]
                          --miopen    [MIOpen Version - optional (default:1.8.1)]
                          --miopengemm[MIOpenGEMM Version - optional (default:1.1.5)]
                          --ffmpeg    [FFMPEG Installation - optional (default:no) [options:Install ffmpeg - yes]]
                          --rpp       [RPP Installation - optional (default:yes) [options:yes/no]]

Note: use --installer yum for CentOS

Refer to Wiki page for developer instructions.

Build & Install MIVisionX

Windows

Using .msi packages

Using Visual Studio 2017 on 64-bit Windows 10

  • Install OpenCL SDK
  • Install OpenCV with/without contrib to support camera capture, image display, & opencv extensions
    • Set OpenCV_DIR environment variable to OpenCV/build folder
    • Add %OpenCV_DIR%\x64\vc14\bin or %OpenCV_DIR%\x64\vc15\bin to your PATH
  • Use MIVisionX.sln to build for x64 platform

NOTE: vx_nn is not supported on Windows in this release

Linux

Using apt-get/yum

Prerequisites
  1. Ubuntu 16.04/18.04 or CentOS 7.5/7.6
  2. ROCm supported hardware
  3. ROCm
Ubuntu
sudo apt-get install mivisionx
CentOS
sudo yum install mivisionx

Note:

  • vx_winml is not supported on linux
  • source code will not available with apt-get/yum install
  • executables placed in /opt/rocm/mivisionx/bin and libraries in /opt/rocm/mivisionx/lib
  • OpenVX and module header files into /opt/rocm/mivisionx/include
  • model compiler, toolkit, & samples placed in /opt/rocm/mivisionx
  • Package (.deb & .rpm) install requires OpenCV v3.4.0 to execute AMD OpenCV extensions

Using MIVisionX-setup.py and CMake on Linux (Ubuntu 16.04/18.04 or CentOS 7.5/7.6) with ROCm

  • Install ROCm
  • Use the below commands to setup and build MIVisionX
git clone https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX.git
cd MIVisionX
python MIVisionX-setup.py --directory [setup directory - optional]
                          --installer [Package management tool - optional (default:apt-get) [options: Ubuntu:apt-get;CentOS:yum]]
                          --miopen    [MIOpen Version - optional (default:1.8.1)]
                          --miopengemm[MIOpenGEMM Version - optional (default:1.1.5)]
                          --ffmpeg    [FFMPEG Installation - optional (default:no) [options:Install ffmpeg - yes]]
                          --rpp       [RPP Installation - optional (default:yes) [options:yes/no]]

Note: Use --installer yum for CentOS

mkdir build
cd build
cmake ../
make -j8
sudo make install

Note:

  • vx_winml is not supported on Linux
  • the installer will copy all executables into /opt/rocm/mivisionx/bin and libraries into /opt/rocm/mivisionx/lib
  • the installer also copies all the OpenVX and module header files into /opt/rocm/mivisionx/include folder

Using CMake on Linux (Ubuntu 16.04/18.04 or CentOS 7.5/7.6) with ROCm

  • Install ROCm
  • git clone, build and install other ROCm projects (using cmake and % make install) in the below order for vx_nn.
  • install protobuf
  • install OpenCV
  • install FFMPEG n4.0.4 - Optional
  • build and install (using cmake and % make install)
    • executables will be placed in bin folder
    • libraries will be placed in lib folder
    • the installer will copy all executables into /opt/rocm/mivisionx/bin and libraries into /opt/rocm/mivisionx/lib
    • the installer also copies all the OpenVX and OpenVX module header files into /opt/rocm/mivisionx/include folder
  • add the installed library path to LD_LIBRARY_PATH environment variable (default /opt/rocm/mivisionx/lib)
  • add the installed executable path to PATH environment variable (default /opt/rocm/mivisionx/bin)

Verify the Installation

Linux

  • The installer will copy all executables into /opt/rocm/mivisionx/bin and libraries into /opt/rocm/mivisionx/lib

  • The installer also copies all the OpenVX and OpenVX module header files into /opt/rocm/mivisionx/include folder

  • Apps, Samples, Documents, Model Compiler and Toolkit are placed into /opt/rocm/mivisionx

  • Run samples to verify the installation

    • Canny Edge Detection

    export PATH=$PATH:/opt/rocm/mivisionx/bin
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib
    runvx /opt/rocm/mivisionx/samples/gdf/canny.gdf 
    

Note: More samples are available here

Docker

MIVisionX provides developers with docker images for Ubuntu 16.04, Ubuntu 18.04, CentOS 7.5, & CentOS 7.6. Using docker images developers can quickly prototype and build applications without having to be locked into a single system setup or lose valuable time figuring out the dependencies of the underlying software.

MIVisionX Docker

Docker Workflow Sample on Ubuntu 16.04

Prerequisites

Workflow

  • Step 1 - Install rocm-dkms
sudo apt update
sudo apt dist-upgrade
sudo apt install libnuma-dev
sudo reboot
wget -qO - http://repo.radeon.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -
echo 'deb [arch=amd64] http://repo.radeon.com/rocm/apt/debian/ xenial main' | sudo tee /etc/apt/sources.list.d/rocm.list
sudo apt update
sudo apt install rocm-dkms
sudo reboot
  • Step 2 - Setup Docker
sudo apt-get install curl
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
sudo apt-get update
apt-cache policy docker-ce
sudo apt-get install -y docker-ce
sudo systemctl status docker
  • Step 3 - Get Docker Image
sudo docker pull mivisionx/ubuntu-16.04
  • Step 4 - Run the docker image
sudo docker run -it --device=/dev/kfd --device=/dev/dri --cap-add=SYS_RAWIO --device=/dev/mem --group-add video --network host mivisionx/ubuntu-16.04
  • Optional: Map localhost directory on the docker image
    • option to map the localhost directory with trained caffe models to be accessed on the docker image.
    • usage: -v {LOCAL_HOST_DIRECTORY_PATH}:{DOCKER_DIRECTORY_PATH}
sudo docker run -it -v /home/:/root/hostDrive/ --device=/dev/kfd --device=/dev/dri --cap-add=SYS_RAWIO --device=/dev/mem --group-add video --network host mivisionx/ubuntu-16.04

Note: Display option with docker

  • Using host display
xhost +local:root
sudo docker run -it --device=/dev/kfd --device=/dev/dri --cap-add=SYS_RAWIO --device=/dev/mem --group-add video --network host --env DISPLAY=unix$DISPLAY --privileged --volume $XAUTH:/root/.Xauthority --volume /tmp/.X11-unix/:/tmp/.X11-unix mivisionx/ubuntu-16.04:latest
  • Test display with MIVisionX sample
export PATH=$PATH:/opt/rocm/mivisionx/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib
runvx /opt/rocm/mivisionx/samples/gdf/canny.gdf 

Release Notes

Known issues

  • Package (.deb & .rpm) install requires OpenCV v3.4.0 to execute AMD OpenCV extensions
  • Latest MIOpen versions with OpenCL backend has linking errors with MIOpenGEMM. If you are facing problems with MIOpen revert back to V1.8.1 or rerun the MIVisionX-setup script.

Tested configurations

  • Windows 10
  • Linux: Ubuntu - 16.04/18.04 & CentOS - 7.5/7.6
  • ROCm: rocm-dkms - 2.7.22
  • rocm-cmake - github master:ac45c6e
  • MIOpenGEMM - 1.1.5
  • MIOpen - 1.8.1
  • Protobuf - V3.5.2
  • OpenCV - 3.4.0
  • Dependencies for all the above packages

About

MIVisionX toolkit is a comprehensive computer vision and machine intelligence libraries, utilities and applications bundled into a single toolkit.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 91.2%
  • Python 4.8%
  • C 3.1%
  • CMake 0.6%
  • Objective-C 0.2%
  • JavaScript 0.1%